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Week #1 Worksheet Solutions

1.1 Row Operations and Systems of Equations
1. State in words the next two elementary row operations you think

should be performed in the process of solving the system associated
with the following augmented matrix.


1 −6 4 0 1
0 −2 −7 0 4
0 0 1 2 −3
0 0 3 1 6


There is no one correct answer I’m looking for. Just describe two
(productive) operations you would do.

Solution. Some examples would be

R3 : −3R3 + R4
R2 : R2 + 7R3
R1 : R1 − 4R3
R1 : R1 − 3R2

In an attempt to eliminate the nonpivot entries in the second and
third columns. ■

2. The augmented matrix of some linear systems have been reduced to
the following forms.

(i) Why does this system require no further solving to describe the
solution set? Describe the solution set (if it exists, or explain
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why a solution does not exist).


1 7 3 −4
0 1 −1 3
0 0 0 1
0 0 1 −2


Solution. Row 3 says 0 = 1, so no solution. ■

(ii) Explain why x1 = 0, x2 = 0, x3 = 0 (the trivial solution) is the
only solution to this system without performing any more row
operations. 

1 −4 9 0
0 1 7 0
0 0 2 0


Solution. Equation 3 tells us x3 = 0. Plugging that into equation
2 tells us x2 = 0. Plugging x2 = x3 = 0 into equation 1 tells us
x1 = 0. ■

1.2 Linear Transformation Preview

3. Consider the system of equations


1 0 −1 0 1
0 1 −1 0 2
0 0 0 1 3

 ⇐⇒
x − z = 1

y − z = 2
w = 3

(a) Show


x = 1
y = 2
z = 0
w = 3

 is a solution by plugging it in. We’ll call this

solution x1.
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Solution.
1 − 0 = 1

2 − 0 = 2
3 = 3

✓

■

(b) We define the function

T (x, y, z, w) =


x − z
y − z

w



= x


1
0
0

 + y


0
1
0

 + z


−1
−1
0

 + w


0
0
1


(Notice how the vectors on each variable are the columns of the
original matrix.)
Compute T (1, 2, 0, 3) (evaluating T at x1). Also compute T (1, 1, 1, 0).

(Just use the T (x, y, z, w) =


x − z
y − z

w

 form.)

Solution.

T (1, 2, 0, 3) =


1 − 0
2 − 0

3

 =


1
2
3

 T (1, 1, 1, 0) =


1 − 1
1 − 1

0

 =


0
0
0


■
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(c) Explain why the function problem

T (x, y, z, w) =


1
2
3



That is,


x − z
y − z

w

 =


1
2
3


is equivalent to the original system of equations, and explain how
the previous part shows x1 is a solution.

Solution. We have just put each equation into the entry of a
vector. Two vectors are equal if and only if each entry is equal, so
saying that these two vectors are equal requires all three equations
to be satisfied.
In short: we just put the equations in the entries of a vector. ■

(d) Show that for any t ∈ R,

xg =


x = 1 + t
y = 2 + t

z = t
w = 3


is also a solution (just plug it in).

Solution.

T (1 + t, 2 + t, t, 3) =


(1 + t) − (t)
(2 + t) − (t)

3

 =


1
2
3

 ✓

■

(e) Show that
T (kx, ky, kz, kw) = k T (x, y, z, w)
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Solution.

T (kx, ky, kz, kw) =


kx − kz
ky − kz

kw

 = k


x − z
y − z

w

 = kT (x, y, z, w)

■

(f) Define

xh = xg − x1 =


x = t
y = t
z = t
w = 0


What is T (xh) = T (t, t, t, 0)? Explain how the previous part
implies this by knowing T (1, 1, 1, 0).

Solution.

T (t, t, t, 0) =


t − t
t − t

0

 = 0⃗

Since T (1, 1, 1, 0) = 0⃗, and T (t, t, t, 0) = tT (1, 1, 1, 0) from the
previous part, it must be zero for all t. That is, because t⃗0 = 0⃗
for all t. ■

Remark 1. It is a linear algebra fact that if x1 and x2 are both par-
ticular solutions to a system (or both preimages of a vector), then
their difference x2 − x1 is in the kernel. This is straightforward
to prove:

T (x2 − x1) = T (x2) − T (x1) = b − b = 0⃗

4. Find the general solutions of the systems with given augmented
matrices (if a solution exists). Identify the pivot columns.
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(a)
 1 4 0 7

2 9 0 10

 (b)
 1 −2 −1 3

3 −6 −2 11



(c)


1 −4 2 0

−3 12 −6 0
−2 8 −4 0



(d)


1 2 −5 −15 1252534 ln(2) −5
0 0 1 3 −π23 cos(1) 2
0 0 0 0 1 0
0 0 0 0 0 0



Solution. The REFs of the matrices are as follows:

(a)
 1 0 0 23

0 1 0 −4

 =⇒


x1 = 23
x2 = −4
x3 = t

Pivots: x1, x2

(b)
 1 −2 0 5

0 0 1 2

 =⇒


x1 = 5 + 2t

x2 = t

x3 = 2
Pivots: x1, x3

(c)


1 −4 2 0
0 0 0 0
0 0 0 0

 =⇒


x1 = 4t − 2s

x2 = t

x3 = s

Pivots: x1

(d)


1 2 0 0 0 5
0 0 1 3 0 2
0 0 0 0 1 0
0 0 0 0 0 0

 =⇒



x1 = 5 − 2t

x2 = t

x3 = 2 − 3s

x4 = s

x5 = 0

Pivots: x1, x3, x5

■
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5. Consider the matrix and its reduced echelon form

A =


1 2 1 0 1
1 2 1 0 1
1 2 3 2 3
1 2 1 0 2

 , R =


1 2 0 −1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0


The pivot columns are columns 1, 3, and 5.

(a) Verify the dependence relations of the nonpivot columns of R:
• Col 2 = 2(Col 1)
• Col 4 = Col 3 − Col 1

Solution. 
2
0
0
0

 = 2


1
0
0
0

 , ✓


−1
1
0
0

 =


0
1
0
0

 −


1
0
0
0

 ✓

■

(b) Verify these relations hold for A as well. This is true in general:
the column dependencies are unchanged by row operations.

Solution. 
2
2
2
2

 = 2


1
1
1
1

 , ✓


0
0
2
0

 =


1
1
3
1

 −


1
1
1
1

 ✓

■

(c) The dependence relations can be rewritten as
• −2(Col 1) + Col 2 = 0
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• Col 1 − Col 3 + Col 4 = 0
Verify that 

x1 = −2t + s
x2 = t

x3 = −s
x4 = s
x5 = 0


is a solution to 

1 2 1 0 1 0
1 2 1 0 1 0
1 2 3 2 3 0
1 2 1 0 2 0


for all s, t ∈ R. Can you see how the dependence relations give
this solution?

Solution.

1(−2t + s) + 2(t) + 1(−s) + 0(s) + 1(0) = 0 ✓
1(−2t + s) + 2(t) + 1(−s) + 0(s) + 1(0) = 0 ✓
1(−2t + s) + 2(t) + 3(−s) + 2(s) + 3(0) = 0 ✓
1(−2t + s) + 2(t) + 1(−s) + 0(s) + 2(0) = 0 ✓

All I expect from your solutions is to notice that the numbers
from the column dependence relations sort of match the numbers
in the solution. But here’s a way to look at it.
If we just consider the t terms (i.e., we can let s = 0), we get

1(−2t) + 2(t) + 1(0) + 0(0) + 1(0) = 0
1(−2t) + 2(t) + 1(0) + 0(0) + 1(0) = 0
1(−2t) + 2(t) + 3(0) + 2(0) + 3(0) = 0
1(−2t) + 2(t) + 1(0) + 0(0) + 2(0) = 0

Which we can see cancel out exactly because the second column
is twice the first. That is, if we take −2 of the first column and
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add the second column, we get zero. So we can multiply it by t
and also get zero.
−2(Col 1) + Col 2 = 0 =⇒ −2t(Col 1) + t(Col 2) = 0
Similarly, removing the t terms:

1(s) + 0(s) + 1(−s) + 0(s) + 1(0) = 0
1(s) + 0(s) + 1(−s) + 0(s) + 1(0) = 0
1(s) + 0(s) + 3(−s) + 2(s) + 3(0) = 0
1(s) + 0(s) + 1(−s) + 0(s) + 2(0) = 0

Here we are taking 1 of the first column, −1 of the third column,
and 1 of the fourth column and then multiplying by s.
Col 1 − Col 3 + Col 4 = 0
=⇒ s(Col 1) + −s(Col 3) + s(Col 4) = 0

Later in the quarter, I can give a better explanation for why this
works. ■

14



Week #2 Worksheet Solutions

2.1 Vectors, Vector / Matrix Equations
1. Compute u + v and u − 2v

u =
−1

2

 , v =
−3
−1



Solution. u + v =
−4

1

 and u − 2v =
5
4

 ■

2. Write a system of equations that is equivalent to the given vector
equation and solve it (if a solution exists).

x1


1

−2
0

 + x2


0
1
2

 + x3


5

−6
8

 =


1

−1
2



Solution.

x1 + 5x3 = 1
−2x1 + x2 − 6x3 = −1

2x2 + 8x3 = 2
⇐⇒


1 0 5 1

−2 1 −6 −1
0 2 8 2



∼


1 0 5 1
0 1 4 1
0 0 0 0

 =⇒


x1
x2
x3

 =


1 − 5t
1 − 4t

t


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One particular solution is


x1 = 1
x2 = 1
x3 = 0

, which corresponds to the fact

that

1


1

−2
0

 + 1


0
1
2

 + 0


5

−6
8

 =


1

−1
2


■

3. Determine if b is a linear combination of a1, a2, and a3.

(a)

a1 =


1

−2
0

 , a2 =


0
1
2

 , a3 =


5

−6
8

 , b =


1

−1
2


Hint: Look at problem 2.

Solution. This is directly implied by problem two, since we got a
solution. Remember, a vector equation (and by extension, a
system of equations) is consistent if and only if the RHS
vector is a linear combination of the variable vectors. (i.e.
b is in the column space / span of the variable vectors).
We showed that

1


1

−2
0

 + 1


0
1
2

 + 0


5

−6
8

 =


1

−1
2


so we’ve written b as a linear combination of the a vectors.
Note: this means b is in the span of a1, a2, a3. ■

(b)

a1 =


1

−2
2

 , a2 =


0
4
4

 , a3 =


2
0
8

 , b =


−5
1

−7


16



Solution. Writing

x1


1

−2
2

 + x2


0
4
4

 + x3


2
0
8

 =


−5
1

−7


as an augmented matrix,


1 0 2 −5

−2 4 0 1
2 4 8 −7

 ∼


1 0 2 −5
0 4 4 −9
0 4 4 3


From here, we can see that equations two and three tell us
4x2 + 4x3 need to be equal to both −9 and 3.
You may check with a calculator that −9 ̸= 3, so this system is

inconsistent and has no solution. That is, we cannot write


−5
1

−7


as a linear combination of the a vectors.
Note: this means b is not in the span of a1, a2, a3. ■

4. Compute the products using both (i) the column perspective defini-
tion (Ax = x1a1 + . . . + xnan. See page 35 in the textbook), and (ii)
the row-vector rule for computing Ax (see page 38 in the textbook).
If a product is undefined, explain why.
Note: These methods are equivalent, but the point of this problem is
to use both so you can see that they’re equivalent.

(a)


2
6

−1


 5
−1

 (b)
8 3 −4
5 1 2



1
1
1



Solution.
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(a) is not defined, because we have a (3×1)·(2×1). 1 ̸= 2. Recall that
matrix multiplication is defined only when the inner dimensions
match (the number of columns of the left matrix match the rows
of the right matrix)

(m × n) · (n × p) 7→ m × p

(b) This multiplication is defined, because the left matrix has three
columns and the right matrix has three rows. Both have three,
so we can multiply them.
(i) 8 3 −4

5 1 2



1
1
1

 = 1
8
5

 + 1
3
1

 + 1
−4
−2

 =
7
8


(ii) 8 3 −4

5 1 2



1
1
1

 =
8 · 1 + 3 · 1 + (−4) · 1

5 · 1 + 1 · 1 + 2 · 1

 =
7
8


These methods are nearly identical, but there are some minor
nuances.

■

5. Write the system first as a vector equation and then as a matrix
equation. (Do not solve it)

3x1 + x2 − 5x3 = 9
x2 + 4x3 = 0
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Solution.

x1

3
0

 + x2

1
1

 + x3

−5
4

 =
9
0



⇐⇒
3 1 −5
0 1 4



x1
x2
x3

 =
9
0



⇐⇒
 3 1 −5 9

0 1 4 0


Technically, these are three different forms, but they are all equivalent.

■

6. List five vectors in span {v1, v2}. For each vector, show the weights
on v1 and v2 used to generate the vector and list three entries of the
vector. Don’t make a sketch.

v1 =


3
1

−2

 , v2 =


−5
3
0


Hint: This is easier than it sounds. Just pick some constants!

Solution. Remember the span of a set of vectors is just all the linear
combinations. So

span {v1, v2} = {c1v1 + c2v2 : c1, c2 ∈ R}

Which is the mathematician’s way of saying all the vectors of the
form

c1v1 + c2v2
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where we just pick some constants c1, c2. So let’s pick some nice
constants!

1v1 + 0v2 = v1 =


3
1

−2

 0v1 + 1v2 = v2 =


−5
3
0



0v1 + 0v2 = 0 =


0
0
0

 −1v1 + 0v2 = −v1 =


−3
−1
2



0v1 + (−1)v2 = −v2 =


5

−3
0

 1v1 + 1v2 =


−2
4

−2


■

Remark 2. An astute student made the insightful observation that
this process is equivalent to finding random vectors on the plane
generated (spanned) by v1 and v2. If you are so inclined to see that
this is true, you can go to https://www.geogebra.org/3d and plot
some of these points and the plane

3x + 5y + 7z = 0

which is the equation for the plane generated by


3
1

−2

 and


−5
3
0

.
You can also verify that

x = 3
y = 1

z = −2

 ,


x = −5
y = 3
z = 0


both satisfy the equation 3x + 5y + 7z = 0.
You don’t need to know this, but if you are interested in how to get
this equation, here are two methods:
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(a) The cross product:

(3, 1, −2) × (−5, 3, 0) = (6, 10, 14)

=⇒ 6x + 10y + 14z = 0 =⇒ 3x + 5y + 7z = 0

(b) Attempting to solve for a, b, c such that

ax + by + cz = 0

for both 
x = 3
y = 1

z = −2

 ,


x = −5
y = 3
z = 0


This gives the equations

3a + b − 2c = 0
−5a + 3b + 0c = 0 ⇐⇒

 3 1 −2 0
−5 3 0 0



∼
 1 0 −3

7 0
0 1 −5

7 0

 =⇒


a = 3t
b = 5t
c = 7t


Pick t = 1 to get a = 3, b = 5, c = 7.
The benefit to this method is that it works for any sized vectors
(under the conditions where the span can be described by a single
equation), where the cross product only works for this purpose
in R3.

2.2 Eigenvector introduction

7. In linear algebra, one of the most important types of equations are
of the form

Ax = λx
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For example, 2 −1
−3 4

 x
y

 = x

 2
−3

 + y

−1
4

 = λ

x
y


for some number λ. Most linear algebra applications are actually
related to equations of this form.

(a) Let λ = 1, so that the equation is

x

 2
−3

 + y

−1
4

 =
x
y


Rearrange this equation so that it’s in the regular vector form

xa1 + ya2 = 0

and then solve it. (You should get infinitely many solutions).

Hint:
x
y

 = x

1
0

 + y

0
1


Solution.

x

 2
−3

 + y

−1
4

 −
x
y

 =
0
0


⇐⇒ x

 2
−3

 + y

−1
4

 − x

1
0

 − y

0
1

 =
0
0


⇐⇒ x

 1
−3

 + y

−1
3

 =
0
0


From here, you can make this an augmented matrix and solve it,
but we can also see that if we let x = y, that would definitely
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give us a solution. Another way to look at it is

x

 1
−3

 + y

−1
3


= x

 1
−3

 − y

 1
−3


= (x − y)

 1
−3

 =
0
0



Again, the only way this is true is if x = y. That tells us our
solutions should be x = t

y = t


with one particular solution being

x = 1
y = 1

.
Let’s also verify our work:

t

 2
−3

 + t

−1
4

 = 1
t
t

 ✓

1
 2
−3

 + 1
−1

4

 = 1
1
1

 ✓

So this is actually a valid solution! ■

(b) Pick some nonzero solution v (set t = 1 or something) and verify
that

Av = v
(If multiplying Av does not give back v, you might want to check
your work for the previous part)
Explain why

A99999999999999v = v
(Do not actually calculate A99999999999999).
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Solution. Let’s pick our nice particular solution v =
1
1

.

Av =
 2 −1
−3 4

 1
1

 = 1
 2
−3

 + 1
−1

4

 =
1
1


Exactly as we saw in the previous part. We can also check with
the row-vector rule: 2 −1

−3 4

 1
1

 =
2(1) + (−1)(1)

−3(1) + 4(1)

 =
1
1

 ✓

So, why is A99999999999999v = v? Well, if A doesn’t change v, then
doing it multiple times won’t change it still. Another way to look
at it is

v = Av = A2v = A3v = . . .

■

(c) Do what you did in part 1 for λ = 2.

x

 2
−3

 + y

−1
4

 =
2x
2y


How many solutions do you get this time?

Solution.

x

 2
−3

 + y

−1
4

 −
2x
2y

 =
0
0


⇐⇒ x

 2
−3

 + y

−1
4

 − x

2
0

 − y

0
2

 =
0
0


⇐⇒ x

 0
−3

 + y

−1
2

 =
0
0


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In equation form, this says

−y = 0
−3x + 2y = 0

The first equation tells us y = 0, and then plugging that into
the second equation tells us x = 0. Therefore, we only get the
trivial solution, and this is very boring. That is, there is only one
solution: and it’s the zero solution. ■

Remark 3. One observation to make is that we have essentially
shown that we can find a nonzero vector v such that

Av = 1v

(such as
1
1

) but there is not a nonzero vector such that

Av = 2v

This means that 1 is a very special number associated with A, but
2 is not. You will talk more extensively about what’s going on
here, and how to find these special numbers, later in the course.
Remark 4. An astute student also noticed the similarities of the
equation

Ax = λx

to the Lagrange multiplier equation

∇f = λ∇g

And though the Lagrange multiplier method is more general
(since it doesn’t have to be linear), there are actually cases where
a Lagrange multiplier problem turns into the former.
One example that comes up very often (and is actually the basis
of data/image compression and principle component analysis) is
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trying to maximize the magnitude of the output of multiplying
by A. That is, maximizing ∥Ax∥2, while restricting ourselves to
unit vectors ∥x∥ = 1 (without this restriction, we wouldn’t be
able to find an answer since we could just make the vectors super
big). This results in the equation

AT Ax = λx (1)

You haven’t yet learned about what AT means (and this class
doesn’t cover magnitudes or inner products, unfortunately), but
later on you can research principle component analysis (PCA),
singular value decomposition (SVD), and how linear algebra is
used in image compression, if you are interested.

2.3 Polynomial Interpolation / Least Squares

8. In statistics and many other fields, we often want a polynomial that
fits data points. Let’s consider a very simple case where we just have
two data points.

(1, 1), (3, 5)

(a) Using your basic algebra knowledge, find the equation of a line
that passes through these two points (use the point-slope formula
y = y1 + m(x − x1)).

Solution. m = 5−1
3−1 = 2

y = 1 + 2(x − 1) = 2x − 1 = −1 + 2x

Writing it as −1 + 2x will actually help us keep things consistent
for other parts. ■

(b) In linear algebra, we can view this from a different perspective.
We suppose that our polynomial is of the form

p(x) = a0 + a1x
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with one variable for each data point. Show that these data points
give us a system of equations

a0 + 1a1 = 1
a0 + 3a1 = 5

and write it as a vector equation.
Hint: What are p(1) and p(3)?

Solution. To find p(1) or p(3) we just plug in 1 or 3 for x.

p(1) = a0 + 1a1

p(3) = a0 + 3a1

If we want this to pass through the point (1, 1), that precisely
means p(1) = 1. So that gives us

a0 + 1a1 = 1

Similarly, to pass through (3, 5), we need p(3) = 5, which gives
us the second equation. ■

(c) Solve the system and show it gives you the same line you computed
in the first part.

Solution. The augmented matrix is 1 1 1
1 3 5

 ∼
 1 0 −1

0 1 2


Thus, a0 = −1 and a1 = 2. So

p(x) = −1 + 2x

Exactly as we calculated in the previous part. ■
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(d) If we add another data point (4, 4) (which adds a new equation
a0+4a1 = 4) show that there is no solution to the system (implying
there is no p(x) of the form a0 + a1x that passes through those
three points).

Solution. Adding the third equation
a0 + 1a1 = 1
a0 + 3a1 = 5
a0 + 4a1 = 4

Row reducing the augmented matrix results in
1 0 −1
0 1 2
0 0 1


Therefore, we get no solution. This is hopefully intuitive, be-
cause we can’t draw a straight line between these three points.

−1 1 2 3 4 5

2

4

6

(1, 1)

(3, 5)

(4, 4)

y = 2x − 1

x

y

■

(e) If we add an x2 term
p(x) = a0 + a1x + a2x

2

Explain why 
1 1 1 1
1 3 9 5
1 4 16 4


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is the system of equations that correspond to the constraints:

p(1) = 1, p(3) = 5, p(4) = 4

Also, explain why these constraints are equivalent to passing
through the data points (1, 1), (3, 5), (4, 4)

Solution. p(x) = a0 + a1x + a2x
2 means that p(1) = 1 becomes

p(1) = a0 + 1a1 + 12a2 = 1

which gives us the first equation of the given augmented matrix.
The exact same logic gives us the rows 1 3 32 5

1 4 42 4


■

(f) The REF of the matrix is


1 0 0 −4
0 1 0 6
0 0 1 −1


write the polynomial p(x). Compute p(1), p(3), p(4) to verify that
it passes through the points

(1, 1), (3, 5), (4, 4)

I recommend you plot the quadratic in Desmos and verify (just
by looking) that it passes through the points as well.

Solution. This REF matrix tells us a0 = −4, a1 = 6, and a2 = −1.
Thus,

p(x) = −4 + 6x − x2
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We can also see

p(1) = −4 + 6(1) − (1)2 = 1 ✓

p(3) = −4 + 6(3) − (3)2 = 5 ✓

p(4) = −4 + 6(4) − (4)2 = 4 ✓

−1 1 2 3 4 5

2

4

6

(1, 1)

(3, 5)

(4, 4)

2x − 1
−4 + 6x − x2

x

y

■

2.3.1 Least Squares

(g) It’s often incredibly important and useful in application to find the
line of best fit (that is, the linear polynomial that gets “closest” to
the data points). You can actually use linear algebra to compute
it. We won’t get into that in this class, but I’ll show you how it’s
done (without getting into why it works).
The system you computed in a previous part was

1 1 1
1 3 5
1 4 4


This system didn’t have a solution, but we can find the “closest”
solution.
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What we do is multiply by the coefficient matrix turned on its
side (what is called the transpose).
Remark 5. This “transpose” is the AT found in equation (1).

1 1 1
1 3 4




1 1 1
1 3 5
1 4 4

 =
 3 8 10

8 26 32

 ∼
 1 0 2/7

0 1 8/7


All you need to do for this part is graph the line
p(x) = 2

7 + 8
7x alongside the data points and just ver-

ify that it gets pretty close. Just plot it on Desmos and give
a very quick rough sketch.

−1 1 2 3 4 5

2

4

6

(1, 1)

(3, 5)

(4, 4)

y = 2
7 + 8x

7

x

y

Pretty close, huh?
Note: Notice that we “happened” to get a consistent system.
It turns out multiplying by the matrix turned on its side actu-
ally always gives you a consistent system (which is actually the
“closest” solution possible!). The reasons for why this work are
unfortunately quite advanced, but if you are interested, you can
research “Least squares”.

(h) Use your calculus knowledge to explain why
1 x1 x2

1 x3
1 y1

0 1 2x1 3x2
1 0

1 x2 x2
2 x3

2 y2
0 1 2x2 3x2

2 0


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is the system that corresponds to finding a cubic polynomial that
satisfies the constrains

p(x1) = y1, p′(x1) = 0, p(x2) = y2, p′(x2) = 0

Do not solve it. Just explain how the system corresponds to the
constraints.
Hint: Suppose

p(x) = a0 + a1x + a2x
2 + a3x

3

and consider p′(x1) and p′(x2).

Solution. The first and third row are just the degree three poly-
nomial version of what we did in part (e).

p(x1) = a0 + a1x1 + a2x
2
1 + a3x

3
1 = y1 =⇒

[
1 x1 x2

1 x3
1 y1

]
and similar for x2. The second and fourth row are the weird ones
that look different from what we’ve had so far. But let’s consider
the constraints on p′(x). (Note: it’s often a good strategy in
mathematics to look at your givens and simply write what they
mean)

p′(x) = a1 + 2a2x + 3a3x
2

=⇒

p′(x1) = a1 + 2a2x1 + 3a3x
2
1 = 0

p′(x2) = a1 + 2a2x2 + 3a3x
2
2 = 0

=⇒
 0 1 2x1 3x2

1 0
0 1 2x2 3x2

2 0


Therefore, combining the rows/equations together gives us the
augmented matrix we were given. ■

32



Optional Problems

9. Describe all solutions of Ax = 0 in parametric vector form, where A
is row equivalent to the given matrix.

(a) A =
1 −2 −9 5
0 1 2 −6


(b) A =

 3 −9 6
−1 3 −2



(c) A =


1 5 2 −6 9 0
0 0 1 −7 4 −8
0 0 0 0 0 1
0 0 0 0 0 0


Solution. (a) 1 −2 −9 5

0 1 2 −6

 ∼
1 0 −5 −7
0 1 2 −6




x1 = 5t + 7s
x2 = −2t + 6s

x3 = t
x4 = s

 =⇒ x = t


5

−2
1
0

 + s


7
6
0
1


Remark 6. From the REF, we can see

• 5(Col 1)-2(Col 2)+(Col 3)=0 =⇒


5

−2
1
0



• 7(Col 1)+6(Col 2)+(Col 4)=0 =⇒


7
6
0
1


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This method requires less writing so, I’m just going to use it since
these are optional problems.

(b)  3 −9 6
−1 3 −2

 ∼
1 −3 2
0 0 0


We can do 2(Col 1)+3(Col 2)=0 and -2(Col 1)+(Col 3)=0 so that
tells us

x = t


2
3
0

 + s


−2
0
1


(a) 

1 5 2 −6 9 0
0 0 1 −7 4 −8
0 0 0 0 0 1
0 0 0 0 0 0

 ∼


1 5 0 8 1 0
0 0 1 −7 4 0
0 0 0 0 0 1
0 0 0 0 0 0



• -5(Col 1)+(Col 2)=0 =⇒



−5
1
0
0
0
0



• -8(Col 1)+7(Col 3)+(Col 4)=0 =⇒



−8
0
7
1
0
0


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• -1(Col 1)-4(Col 3)+(Col 5)=0 =⇒



−1
0

−4
0
1
0



x = t1



−5
1
0
0
0
0


+ t2



−8
0
7
1
0
0


+ t3



−1
0

−4
0
1
0


■

10. Given A and b, write the augmented matrix for the linear system
that corresponds to the matrix equation Ax = b. Then solve the
system and write the solution as a vector.

A =


1 2 1

−3 −1 2
0 5 3

 , b =


0
1

−1



Solution.


1 2 1 0
−3 −1 2 1
0 5 3 −1

 ∼


1 0 0 3

5
0 1 0 −4

5
0 0 1 1



=⇒


x1 = 3

5
x2 = −4

5
x3 = 1

 =⇒ x =


3
5

−4
5

1


■
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Week #3 Worksheet Solutions

3.1 Linear Independence and Span
1. Find four vectors in R2, a1, a2, b1, b2 such that

• x1a1 + x2a2 = b1 is inconsistent
• x1a1 + x2a2 = b2 is consistent.

And then (without doing any more work) find one 2 × 2 matrix A
such that

• Ax = b1 is inconsistent
• Ax = b2 is consistent.

Solution. The tricky part about this problem is that in order for the
system to possibly be inconsistent, the a vectors have to be linearly
dependent. Otherwise, the a vectors will span R2 and every system
will be consistent.
I’ll pick the absolute easiest solution I can think of (that isn’t com-
pletely trivial).

a1 =
1
0

 a2 =
0
0


b1 =

0
1

 b2 =
0
0


Then we have

x1

1
0

 + x2

0
0

 =
0
1


x1

1
0

 + x2

0
0

 =
0
0


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The first is clearly inconsistent and a homogeneous system is always
consistent.
To satisfy the other part, we just use the a vectors as the columns of
A. 1 0

0 0

 x1
x2

 =
0
1


1 0
0 0

 x1
x2

 =
0
0


Another totally valid solution: a1 = a2 = b2 = 0⃗ and b1 ̸= 0⃗ would
totally work. ■

2. Determine if the vectors are linearly independent. Justify each
answer.

(a)
 1
−3

 ,

−3
9

 (b)


0
0
2

 ,


0
5

−8

 ,


−3
4
1



(c)


5
0
0

 ,


7
2

−4

 ,


9
4

−8

 (d)
−1

4

 ,

−2
−8



Solution. Note that there are many ways to determine linear (in)dependence.
I won’t write out every single way. Your method could totally be
valid.

(a) We can see that v2 = −3v1, so they’re dependent.
(b) 

0
0
2

 ,


0
5

−8

 ,


−3
4
1


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We get a sort of triangular form here. If we were to have some
linear combination to get zero, the first row of the system we’d
get would imply that c3 = 0. Substituting that into the second
equation would give c2 = 0 etc. Therefore, they’re independent.
This is similar to a problem on the first worksheet.

(c) 
5
0
0

 ,


7
2

−4

 ,


9
4

−8


If we were to try to get a linear combination of these vectors to
get zero, then we can always choose the constant c1 on the first
vector to cancel out whatever is in the first entry. Therefore, we
just need to focus on the second and third rows of the second
and third vector.  2

−4

 ,

 4
−8


We can see that c2 = −2c3 will cancel out the second and third
entries.

c1


5
0
0

 − 2c3


7
2

−4

 + c3


9
4

−8

 = c1


5
0
0

 + c3


−5
0
0

 =


0
0
0


Picking c1 = 1 and c3 = 1 will work, so there’s a nontrivial linear
combination. Therefore, they are dependent, since there are only
two vectors.

(d) −1
4

 ,

−2
−8


Here, we can see that neither vector is a scalar multiple of the
other. That is enough to say they’re independent.
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■

3. Determine if the columns of the matrix form a linearly independent
set. Then determine if the function T (x) = Ax is injective. Justify
each answer.

(a)


−4 −3 0
0 −1 4
1 0 3
5 4 6

 (b)


1 −3 3 −2

−3 7 −1 2
0 1 −4 3


Hint: Part (b) requires no scratch work.

Solution. Recall that the function Ax is injective exactly when the
columns of A are linearly independent. Therefore, the answer for
independence will be the same as the answer for injectivity.

(a) For this matrix, there aren’t any clear signs that this is indepen-
dent. However, we can see that if we take 4 of column 2, we’ll
need −3 of column 1 and 1 of column 3 to cancel out the first
two entries.

−3


−4
0
1
5

 + 4


−3
−1
0
4

 + 1


0
4
3
6

 =


0
0
0
7

 ̸= 0⃗

So it is independent and injective.
However, if you couldn’t see that immediately (that the first and
third column would make it easy to cancel out entries of the
remaining second column), then we can row reduce.
If we swap rows 1 and 3 (and multiply row 2 by −1), we get

1 0 3
0 1 −4

−4 −3 0
5 4 6

 ∼


1 0 3
0 1 −4
0 −3 12
0 4 −9

 ∼


1 0 3
0 1 −4
0 0 0
0 0 5


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We can see now that we’ll get a pivot in every column


1 0 3
0 1 −4
0 0 0
0 0 5


so the vectors are independent. Theerefore, the function Ax will
also be injective.

(b) 
1 −3 3 −2

−3 7 −1 2
0 1 −4 3


Here we don’t need to do any work. There are too many columns
for every column to be a pivot column! With only three rows, we
can only have three pivots maximum. With four variables, that
means we have at least one free variable.
Someone asked in discussion “which is the dependent column?”
In general, that is a very good question to ask, and a good thing
to know. But for this problem, the answer is: “I don’t know and
I don’t care!” If all we need to know is if they are independent,
then the fact that there is a free variable is all I need to know.

■

Remark 7. This logic implies that if you have more than m vectors
from Rm, then they are automatically linearly dependent.

4. For what values of h is
(i) v3 in Span{v1, v2}?
(ii) x1v1 + x2v2 = v3 consistent?
(iii) {v1, v2, v3} linearly dependent? Justify each answer.
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(a) v1 =


1

−3
2

 , v2 =


−3
9

−6

 , v3 =


5

−15
h



(b) v1 =


1

−5
−3

 , v2 =


−2
10
7

 , v3 =


2

−9
h


Solution. First, a remark: (ii) is exactly equivalent to (i). So what-
ever we say for (i) is also the answer for (ii).

(a) Notice that v2 = −3v1. So, this set will always be linearly
dependent.
(i) We can notice that in both v1 and v2, the second entry is −3

times the first, and the third entry is 2 times the first. This
property will hold for any linear combination, so if v3 is in the
span (it is a linear combination), then the third entry must
be twice the first. That is,

h = 2(5) = 10

Notice that this is only possible because the second entry is
−15 = −3(5). If this wasn’t the case, v3 couldn’t possibly be
in the span.

(ii) Same for (i), as stated above.
(iii) As we also said above, since v2 = −3v1, any set of vectors

containing both v1, v2 will always be linearly dependent. It
doesn’t matter what the other vectors are.
This confused some students, but basically, being linearly
independent is a property about a group of vectors saying that
none of them are combinations of the others. If any one of
them is a combination of any of the others, then the whole
group is tainted. And I can add whatever vectors I want. The
group is still tainted.
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(b)

v1 =


1

−5
−3

 , v2 =


−2
10
7

 , v3 =


2

−9
h


We find a similar behavior from the previous part that the second
entry is −5 times the first entry. This will also be preserved
through linear combinations.
(i) Unfortunately, v3 doesn’t have this property that the second

entry is −5 the first, so there’s no way for there to be a linear
combination of v1, v2 to get v3. This is actually sufficient for
the problem.
You would also see this if you were trying to solve the system
in (ii): 

1 −2 2
−5 10 −9
−3 7 h

 ∼


1 −2 2
0 0 1
0 1 h + 6


This is inconsistent.

(ii) Same for (i), as stated above.
(iii) At this point, we can conclude that since v1 and v2 are not

scalar multiples of each other (meaning they are independent),
and v3 is independent from {v1, v2}, then the whole set of
vectors must be independent always. Though, I am not sure
you learned in lecture that adjoining an independent vector
to an independent set results in an independent set.
Examining the reduced matrix (though it’s not in EF or REF)


1 −2 2
0 0 1
0 1 h + 6


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we can spot that we’ll have three pivots:


1 −2 2
0 0 1
0 1 h + 6


Since every column is a pivot column, they are linearly inde-
pendent. In this case, it doesn’t matter what h is, so there is
no h such that the set is dependent.

■

3.2 Determinant Introduction

5. Consider the matrix A =
a b
c d

 and the homogeneous system

a b
c d

 x1
x2

 =
0
0

 (2)

(a) Explain why if there exists a nontrivial solution to (2), then that

directly implies the columns of A,

a
c

 ,

b
d

 must be linearly

dependent.

Solution. This is basically just definition. If there’s a nontrivial

solution
x1
x2

, then we’re saying for at least one x1, x2 nonzero

a b
c d

 x1
x2

 = x1

a
c

 + x2

b
d

 =
0
0


Meaning there is a nontrivial linear combination that yields zero.
That’s the definition of linear dependence! ■
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(b) Show that if the columns of A,

a
c

 ,

b
d

, are linearly dependent,

then ad − bc = 0.
Hint: Suppose for k1, k2 not both zero that

k1

a
c

 + k2

b
d

 =
0
0

 =⇒

ak1 + bk2 = 0
ck1 + dk2 = 0

Use the fact that bothd(ak1 + bk2) − b(ck1 + dk2) = d(0) − b(0) = 0
−c(ak1 + bk2) + a(ck1 + dk2) = −c(0) + a(0) = 0

must be satisfied.

Solution. If the vectors are dependent, then we can find k1, k2 not
both zero such that

k1

a
c

 + k2

b
d

 =
0
0

 =⇒

ak1 + bk2 = 0
ck1 + dk2 = 0

Examining the two equations in the hint:d(ak1 +�
��bk2) − b(ck1 +�

��dk2) = k1(ad − bc) = 0
−c(���ak1 + bk2) + a(���ck1 + dk2) = k2(ad − bc) = 0

Well, if at least one of the k’s is nonzero (say, without loss of
generality, it was k1), then

k1(ad − bc) = 0 =⇒ ad − bc = 0

The only way two (real) numbers can multiply to zero is if at
least one of them is zero.
Similarly if k2 is nonzero the same thing is implied. Therefore,
we’ve shown that dependent columns implied ad − bc = 0. ■
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(c) Show that if ad − bc = 0, then both
 d
−c

 and
−b

a

 are

homogeneous solutions toa b
c d

 x1
x2

 =
0
0


Solution. To be homogeneous solutions, that just means that
plugging them in should give us zero! So let’s check that.a b

c d

  d
−c

 =
ad − bc

0

 =
0
0

 ✓
a b
c d

 −b
a

 =
 0
ad − bc

 =
0
0

 ✓

Again, these are zero because ad − bc = 0. If it was nonzero, this
wouldn’t work. (Note this is explored in (4.3)) ■

(d) Assume that a, b, c, d are not all zero. This means that at least

one of
 d
−c

 or
−b

a

 are nonzero vectors. Explain how the the

previous part implies that if ad−bc = 0, then there is a nontrivial
homogeneous solution.

Solution. The only way for both
 d
−c

 and
−b

a

 to be the zero

vectors are if a = b = c = d = 0. Therefore, at least one of these
vectors is nonzero. Since we showed previously that they are
homogeneous solutions, at least one of these vetcors is a nonzero
(nontrivial) homogeneous solution. ■

(e) Based on all these parts together, explain how we have showed

that (for a 2 × 2 matrix A =
a b
c d

) the following are equivalent
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i. There exists a nontrivial homogeneous solution
ii. The columns are linearly dependent
iii. ad − bc = 0

Solution. Essentially we have created a sort of circle of implica-
tions

i

iiiii

(a)
(b)

(d
)

Therefore, either all of them are true, or none of them are true. ■

(f) Explain how knowing ad − bc ̸= 0 implies
i. The only homogeneous solution is the trivial solution.
ii. The columns are linearly independent
Remark 8. Eventually, we will show that ad − bc ̸= 0 is equivalent
to Ax being injective and surjective. But it turns out these two
things are equivalent to being at least injective.

Solution. Like I said in the previous part, either all of them are
true, or none of them are true (they are equivalent after all!).
Therefore, if iii is false, then the other properties must also be
false. What we have here are just the opposites. ■
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Week #4 Worksheet Solutions

4.1 Linear Transformations (Injectivity / Surjectiv-
ity)

1. Define the linear transformation

T (x) =


1 1 1 3 −1
1 2 2 5 0
1 2 3 6 0

x

(a) For what α and β is T a function T : Rα → Rβ?

Solution. This is a 3 × 5 matrix. Thus, for Ax to be defined, x
needs to have 5 rows. That is, the inputs to T need to be in
R5. The outputs will be linear combinations of the columns of A,
which have three rows. Thus, the outputs are in R3, so

T : R5 → R3

In general, an m × n matrix defines a transformation
Rn → Rm. ■

(b) Determine if T is injective, surjective, neither, or both.

Solution. This matrix has too many columns to have a pivot in
every column, so it’s definitely not injective.
After performing R2 − R1 and R3 − R2 we get three pivots

1 1 1 3 −1
0 1 1 ∗ ∗
0 0 1 ∗ ∗


(the ∗ are entries we don’t care about). The important thing
we’re looking for is that we get a pivot in every row. Since we do
have that, this transformation is surjective. ■
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2. Assume that T is a linear transformation. Find the standard matrix
of T .

(a)

T : R2 → R4, T (e1) = (3, 1, 3, 1), T (e2) = (−5, 2, 0, 0)

where e1 = (1, 0) and e2 = (0, 1).
(b)

T : R3 → R2, T (e1) = (1, 3), T (e2) = (4, −7), T (e3) = (−5, 4)

where e1, e2, e3 are the columns of the 3 × 3 identity matrix.

Solution. The standard matrix is just given by placing the images of
the standard basis vectors (the e’s) as the columns. The ith column
is the image of ei (T (ei)). Thus, the matrices are just

(a)


3 −5
1 2
3 0
1 0


(b)

1 4 −5
3 −7 4


■

Remark 9. For how to find the matrix of a transformation where you
don’t have the images of the standard basis vectors, see (5.1).

3. Decide if T maps R5 onto R5 (i.e. if T is surjective).

(a) 

1 1 0 0 0
0 1 1 0 0
0 0 1 −1 0
0 0 0 1 0
0 0 0 0 1


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Solution. This has a pivot in every row so it’s surjective. ■

(b) 

1 −5 0 0 25
0 1 0 0 −4
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0


Solution. There is a row of zeros, so it’s not surjective. ■

4.2 Eigenvectors and Determinants

4. Last week (3.2) we showed that (for a 2 × 2 matrix A =
a b
c d

) the

following are equivalent

(i). The only solution to Ax = 0⃗ is the trivial solution (A has a trivial
kernel or ker(A) =

{⃗
0
}
)

(ii). The columns of A are linearly independent
(iii). ad − bc ̸= 0

The week before (2.2), I gave you the matrix A =
 2 −1
−3 4

 and we

looked for vectors which satisfied Av = λv. For λ = 1, we were able

to find a nonzero vector
1
1

, but not for λ = 2. What we basically
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did was rearrange the equation to 2 −1
−3 4

 x
y

 = λ

x
y


=⇒ x

 2
−3

 + y

−1
4

 = x

λ
0

 + y

0
λ


=⇒ x

2 − λ
−3

 + y

 −1
4 − λ

 =
0
0


=⇒

2 − λ −1
−3 4 − λ

 x
y

 =
0
0


(a) Based on our equivalent statements, we can understand ad − bc

as a “nontrivial kernel detector”. Calculate ad − bc for the matrix2 − λ −1
−3 4 − λ

 (you will get a quadratic equation) and find the

values of λ such that ad − bc = 0.
Hint: We know that λ = 1 should work, so that should be one of
your solutions. λ = 2 should also not be a solution. We will call
the other value λ1.

Solution.

(2 − λ)(4 − λ) − (−1)(−3)
= λ2 − 6λ + 5

= (λ − 1)(λ − 5) = 0

=⇒ λ = 1, 5
Like we expected, 1 is a solution, but 2 is not. We also see that
λ1 = 5 is our other magical value (eigenvalue is the technical
term). ■

(b) For the other value λ1, find a nonzero vector v in the kernel.
Hint: For consistency with following parts, I suggest picking v
such that the first entry/component is 1.
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Solution. Plugging in λ = 5 we get−3 −1
−3 −1


If we want a nontrivial kernel vector (with a 1 in the first entry),
that means we need to find a value such that−3 −1

−3 −1

 1
?

 = 1
−3
−3

+?
−1
−1

 =
0
0


Clearly ? = −3 works, so our nontrivial kernel vector is

v =
 1
−3


■

(c) For that nonzero vector v, verify that multiplying by A gives you
λ1v.

Solution.

Av =
 2 −1
−3 4

  1
−3


= 1

 2
−3

 − 3
−1

4

 =
 5
−15

 = 5
 1
−3

 ✓

■
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4.2.1 Diagonalization Introduction

(d) Define T (x) =
 2 −1
−3 4

x (i.e. T (x) = Ax). We showed two

weeks ago (2.2) that T

1
1

 = 1
1
1

. Compute

T 100
3

1
1

 − 2
 1
−3


Leave your answer as a linear combination.

Solution. Observe that

T

1
1

 = 1
1
1

 =⇒ T 100
1

1

 = 1100
1
1


T

 1
−3

 = 5
 1
−3

 =⇒ T 100
 1

−3

 = 5100
 1
−3


The defining (and wonderful) property of linear transformations
is that they preserve linear combinations. So, since we know

the image of
1
1

 and
 1
−3

 under T 100, we know the image of

any linear combination (it’s just the linear combination of the
images!).

T 100
3

1
1

 − 2
 1
−3


= 3T 100

1
1

 − 2T 100
 1

−3


= 3

1
1

 − 2
5100

 1
−3


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= 3
1
1

 − 2 · 5100
 1
−3


■

(e) What is A100
3

1
1

 − 2
 1
−3

?

Hint: Do not calculate A100. This part requires no further work.

Solution. Applying T is the same as multiplying by A so the
answer to this part is exactly the same as as the previous part. ■

4.3 Determinants (Part II)

5. We denote the calculation of ad − bc as the determinant: det(A). We
often shorthand the det by using straight lines for the matrix.

ad − bc ..= det
a b

c d

 =
∣∣∣∣∣∣a b
c d

∣∣∣∣∣∣
It turns out there are a lot more things that the determinant can tell
us.

(a) Last week (3.2), we showed that if ad − bc = 0, then
 d
−c

 and−b
a

 are homogeneous solutions. Suppose that ad − bc is NOT

zero. Find preimages of
1
0

 and
0
1


Hint: Calculate

a b
c d

  d
−c

 and
a b
c d

 −b
a

 and assume

ad − bc ̸= 0.
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Solution. We calculated last week (3.2) that
a b
c d

  d
−c

 =
ad − bc

0

 = (ad − bc)
1
0


a b
c d

 −b
a

 =
 0
ad − bc

 = (ad − bc)
0
1



We have that
 d
−c

 is a preimage of (ad−bc)
1
0

, but we want the

preimage of just
1
0

. Well, since linear transformations preserve

scalar multiplication, then scaling a preimage scales the image
by the exact same amount. So if we scale the preimage by 1

ad−bc ,
then that will scale the image by that same amount, giving us
what we want! Notice that it’s important ad − bc is nonzero here,
otherwise we can’t divide it.

Hence, a preimage of
1
0

 is

v1 = 1
ad − bc

 d
−c



since A

 1
ad−bc

 d
−c

 = 1
ad−bcA

 d
−c

 = ad−bc
ad−bc

1
0

 gives us what
we want.

and by the same logic a preimage of
0
1

 is

v2 = 1
ad − bc

−b
a


■
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(b) Let’s call the preimage of
1
0

 you found in the previous part v1,

and the preimage of
0
1

 we will call v2.

i. Using v1 and v2, find a preimage of an arbitrary vector
z1
z2

.
You must keep it in terms of arbitrary z1, z2. You can’t set
them to specific values. You do not have to write the vector
entries explicitly.
Hint: It’s going to be some linear combination of v1 and v2.

Solution. If v1 gives us
1
0

 and v2 gives us
0
1

, then we can

take z1 of v1 and z2 of v2 to get an image of
z1
z2

.
z1v1 + z2v2

Another way to think of it is utilizing that the image of a linear
combination is the same linear combination of the images.

T (c1w1 + . . . + ckwk) = c1T (w1) + . . . + ckT (wk)

We can read this right to left as a preimage of a linear combi-
nation of known images, is that same linear combination of
preimages. Thus,
z1
z2

 = z1

1
0

 + z2

0
1


= z1T (v1) + z2T (v2)

= T (z1v1 + z2v2)

So a preimage is z1v1 + z2v2. ■
ii. Explain how this implies T (x) = Ax is surjective if ad−bc ̸= 0.
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Solution. To be surjective means, by definition, that every
vector in the codomain has a preimage. Since the codomain is
R2, and we found a preimage of a general vector in R2 in the
previous part, then we have not only shown that every vector
has a preimage, but actually found it explicitly! ■

(c) You can assume that the following are equivalent.
i. Ax is injective.
ii. If Ax = b has a solution, that solution is unique.
iii. The only solution to Ax = 0⃗ is the trivial solution.
iv. The columns of A are linearly independent.
v. det(A) ̸= 0
vi. The rows of A are linearly independent.
vii. Ax = b is always consistent.
viii. Ax is surjective.

Based on this, explain why we know that the following system23π
√

3 −e−7 ln(2)
e7 ln(2) π

√
3

 x1
x2

 =
 √

5
tan(1)


is consistent and has a unique solution (without solving it) based
on the calculation
(
23π

√
3
) (

π
√

3
)

−
(
−e−7 ln(2)

) (
e7 ln(2)

)
= 69π2 + ln(2)2 ̸= 0

Solution. The computation is the determinant, which is clearly
nonzero. Thus, we have satisfied v., and by extension all the
other properties. Then vii. tells us the system must be consistent,
and ii. tells us the solution is unique. ■
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4.4 Cramer’s Rule

(d) Verify that if ad − bc ̸= 0, then

x1 =
det

z1 b
z2 d


det

a b
c d

 , x2 =
det

a z1
c z2


det

a b
c d


is the solution to the system of equations

ax1 + bx2 = z1
cx1 + dx2 = z2

by plugging them into the system.
How does this compare to your answer to part b?

Solution.
x1 = z1d − z2b

ad − bc
, x2 = z2a − z1c

ad − bc

Plugging in,

ax1 + bx2 = a(z1d −�
�z2b) + b(���z2a − z1c)
ad − bc

= z1
ad − bc

ad − bc
= z1 ✓

cx1 + dx2 = c(���z1d − z2b) + d(z2a −��z1c)
ad − bc

= z2
−bc + ad

ad − bc
= z2 ✓

Notice thatx1
x2

 =
z1d−z2b

ad−bc
z2a−z1c
ad−bc


= z1

 1
ad − bc

 d
−c

 + z2

 1
ad − bc

−b
a


= z1v1 + z2v2

Exactly like part b. ■
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Remark 10. This is called Cramer’s rule, which gives a general and
explicit formula for each variable in a system Ax = b (where A is
square and has a nonzero determinant).
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Week #5 Worksheet Solutions

5.1 Linear Transformations Continued
1. Let T : R2 → R3 be a linear transformation that maps

u⃗ =
1
3

 7→ T (u) =


4
1

−2



v⃗ =
2
7

 7→ T (v) =


9
2

−5


(a) Use the fact that T is linear to find the images under T of 7u⃗,

−3v⃗, and 7u⃗ − 3v⃗.

Solution. By linearity

T (7u) = 7T (u) =


28
7

−14



T (−3v) = −3T (u) =


−27
−6
15



T (7u − 3v) = 7T (u) − 3T (u) =


28
7

−14

 +


−27
−6
15

 =


1
1
1


■

(b) Row reduce the matrix
 1 2 1 0

3 7 0 1

 into REF
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Solution. ∼
 1 0 7 −2

0 1 −3 1

 ■

Remark 11. Notice this is actually computing the inverse of the
matrix

[
u v

]
.

(c) Find linear combinations of u and v to get the standard basis
vectors. i.e.

c1

1
3

 + c2

2
7

 =
1
0

 , k1

1
3

 + k2

2
7

 =
0
1


You may use the results of part (b).

Solution. The system for the c’s, is just the first three columns of

the augmented matrix in part (b).
 1 0 7

0 1 −3

 So, we just look

at the third column to get the solution c1 = 7, c2 = −3.

Similarly, the fourth column gives us the solution to
 1 0 −2

0 1 1


which is k1 = −2, k2 = 1.
We can verify that

7
1
3

 − 3
2
7

 =
1
0

 , −2
1
3

 +
2
7

 =
0
1


■

5.1.1 Finding Standard Matrices

(d) Find the standard matrix for T .

Solution. The standard matrix is just the image of the standard
basis vectors. But now that we have linear combinations of v and
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u to get them, we can just take the same linear combinations of
the images.
1
0

 = 7u − 3v

=⇒ T

1
0

 = T (7u − 3v) =


1
1
1



as we calculated in part (a). This will be the first column of A.
Similarly,
0
1

 = −2u + v

=⇒ T

0
1

 = −2T (u) + T (v)

= −2


4
1

−2

 +


9
2

−5

 =


1
0

−1


which is the second column. Thus,

A =


1 1
1 0
1 −1


You can confirm that, indeed,

1 1
1 0
1 −1


1
3

 =


4
1

−2

 ,


1 1
1 0
1 −1


2
7

 =


9
2

−5


■
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(e) Row reduce the matrix
 1 3 4 1 −2

2 7 9 2 −5

 into REF and compare

it to your result in part (d).

Solution. ∼
 1 0 1 1 1

0 1 1 0 −1

 Which just gives us I augmented

with the standard matrix (transposed)! This gives us a much
faster method to compute the standard matrix.
So, why does this work? Well, it’s because linear combinations of
the preimages are preserved with the images. So, if we put both
u, v and the images T (u), T (v) as a single vector, u

T (u)

 ,

 v
T (v)


Then, any linear combination will preserve the image

c1

 u
T (u)

 + c2

 v
T (v)

 =
 c1u + c2v
T (c1u + c2v)


This is actually a good thing to make sure you can understand
and justify!
When we row reduce a matrix, we are just taking linear combina-
tions of the rows. And, for square matrices specifically, our goal
is usually to try to get the standard basis vectors as the rows
(and, this is possible exactly when the matrix is invertible).
Remark 12. This method is actually equivalent to the following
method using inverses

A
[
u v

]
=
[
T (u) T (v)

]
=⇒ A =

[
T (u) T (v)

] [
u v

]−1


4 9
1 2

−2 −5


1 2
3 7

−1

=


4 9
1 2

−2 −5


 7 −2
−3 1

 =


1 1
1 0
1 −1


■
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5.2 Matrix Multiplication

2. Compute each matrix sum or product if it is defined. If an expression
is undefined, explain why. Let

A =
2 0 −1
4 −5 2

 , B =
−7 −5 1

1 −4 −3

 , C =
 1 2
−2 1

 , D =
 3 5
−1 4


−2A, B − 2A, AC, CD

Solution. • −2A =
−4 0 2
−8 10 −4


• B − 2A =

−7 −5 1
1 −4 −3

 +
−4 0 2
−8 10 −4

 =
−11 −5 3

−7 6 −7


• AC is not defined, because the dimensions don’t match.
•

CD =
 1 2
−2 1

  3 5
−1 4


=
 3(1) − (2) 5(1) + 4(2)
3(−2) − (1) 5(−2) + 4(1)

 =
 1 13
−7 −6


■

3. Let A =
0 1
0 0

, B =
69 420

5 5

, and C =
π ln(2)
5 5

. Verify that

AB = AC and yet B ̸= C.

Solution. 0 1
0 0

 69 420
5 5

 =
5 5
0 0

 =
0 1
0 0

 69 420
5 5


Therefore, AB = AC ≠⇒ B = C, so we don’t get a nice cancellation
property with matrices. ■

63



Remark 13. The idea behind this exercise is to caution you that matrix
multiplication is not as nice as multiplication of simple numbers. For
example, we know 3x = 3y =⇒ x = y. And, in general, if a ̸= 0 is
a real number, then

ab = ac =⇒ b = c

But we can see this is not so for matrices. This is because some
nonzero matrices can “lose information” (though having a nontrivial
kernel).
In this case, the difference between B and C happened to be in the
kernel of A, so the difference was lost and AB was identical of AC.
This is why invertible matrices are so important. Because then we
can just cancel them! They are the ultra important matrices that
never lose information.
The matrix A in this exercise is actually more sinister than just any
arbitrary non-invertible square matrix. It’s called “nilpotent” because
A2 = 0. See more in (7.3).

4. Let A =
4 −1
5 −2

 and B =


1 1 1
1 2 2
1 2 3


(a) Compute 3I2 − A and (3I2)A.

Solution. 3I2 − A =
−1 1
−5 5

 , (3I2)A = 3A =
12 −3
15 −6

 ■

(b) Compute B − 5I3 and (5I3)B

Solution.

B − 5I3 =


−4 1 1
1 −3 2
1 2 −2

 , (5I3)B = 5B =


5 5 5
5 10 10
5 10 15


■

64



5. Compute the product AB in two ways:

(a) by the definition, where Ab1 and Ab2 are computed separately,
and

(b) by the row–column rule for computing AB

with A =


4 −2

−3 0
3 5

 and B =
1 3
2 −1

.

Solution.

Ab1 =


4 −2

−3 0
3 5


1
2

 = 1


4

−3
3

 + 2


−2
0
5

 =


0

−3
13



Ab2 =


4 −2

−3 0
3 5


 3
−1

 = 3


4

−3
3

 −


−2
0
5

 =


15
−9
4


Thus,

AB =


0 15

−3 −9
13 4


With the alternate computation being

AB =


1(4) + 2(−2) 3(4) − (−2)

1(−3) + 2(0) 3(−3) − (0)
1(3) + 2(5) 3(3) − (5)

 =


0 15

−3 −9
13 4


Observe how these methods are, in fact, equivalent. ■

6. Assume that each matrix expression is defined. That is, the sizes of
the matrices (and vectors) involved “match” appropriately.
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(a) If a matrix A is 5 × 3 and the product AB is 5 × 7, what is the
size of B?

Solution. Like before with vectors, we need the dimensions to
match.

(5 × 3) · (?×?) = (5 × 7)
The inner ones have to match so the number of rows must be
3. For the output to have 7 columns, the right matrix must also
have 7 columns. Thus, B must be a 3 × 7. ■

(b) If T1 : R3 → R5 and T1 ◦ T2 : R7 → R5 what is T2 : R? → R?

Solution. One can observe, that this problem is exactly equivalent
to the previous problem, but let’s pretend we don’t know that.
Imagine you’re taking two trains T2 and T1 (in that order). You
know that T1 starts in Paris and ends in Berlin. Further, you know
that after taking both trains, you will have started in Madrid
and ended up in Berlin. Where must the first train have gone
between? Well, obviously it would have to be from Madrid to
Paris. This same logic can be used for this problem.
We have the following pieces of information:
• T1 takes things from R3 to R5

• Doing T1 after T2 results in a net transformation from R7 to
R5.

Essentially, here R3 is Paris, R5 is Berlin, and R7 is Madrid. So
we expect T2 : R7 → R3 based on our logic from earlier. But let’s
reason it out with the exact spaces given.
The codomain makes sense for the composition, because we know
the outputs of T1 are R5. Since the inputs of T1 are vectors in R3,
and T1 ◦T2 being defined means the outputs of T2 are valid inputs
for T1, that tells us the outputs of T2 have to be in R3. Similarly,
the inputs to T2 have to be the same as the composition T1 ◦ T2.
So the inputs for T2 have to be R7.
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One way to think of it is to draw a picture:

R7 R3

R5
T1◦T2

T1

For this to make sense, we need a line from R7 to R3. Thus, the
diagram is

R7 R3

R5

T2

T1◦T2
T1

■

(c) How many rows does D have if DC is a 3 × 4 matrix?

Solution. The rows of a product are the same as the rows of the
left matrix, so D has three rows.
In terms of linear transformations, if DC outputs vectors in R3

(which it does because it has three rows), and D is the last part
of the transformation, then D must output things to R3 as well,
so it has three rows. ■

5.3 Inverses

7. Find the inverse of A =


1 1 1
1 2 2
1 2 3

 without doing any scratch work,

given that
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•


1 1 1
1 2 2
1 2 3




2
−1
0

 =


1
0
0



•


1 1 1
1 2 2
1 2 3



−1
2

−1

 =


0
1
0



•


1 1 1
1 2 2
1 2 3




0
−1
1

 =


0
0
1



Solution. The key insight for this problem is that the columns of the
inverse of a matrix are the preimages of the standard basis vectors.
Notice the symmetry we have here.

• The columns of A are the images of the standard basis vectors
under A.

• The columns of A−1 are the preimages of the standard basis
vectors under A.

I encourage you to think about why this is true. As a hint, think
about what happens if you do A◦A−1. What happens to the standard
basis vectors?
Thus, the answer is just


1 1 1
1 2 2
1 2 3


−1

=


2 −1 0

−1 2 −1
0 −1 1


You can verify multiplying these matrices does result in I. ■

8. Find the inverses of the following matrices. Show work.

(a)


0 1 0 0
1 0 0 0

−1 2 0 1
0 0 1

2 0

 using the row reduction algorithm (page 110)
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Solution.
Remark 14. i don’t want to type a solution for this. ):
I’m just gonna do some intense row reduction.


0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0

−1 2 0 1 0 0 1 0
0 0 1

2 0 0 0 0 1



∼

R1 → R2
R2 → R1
R3 → 2R4

R4 → −2R1 + R2 + R3


1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 2
0 0 0 1 −2 1 1 0


You would need about 6 elementary operations to do this, and I
don’t want to type all that. Anyway, we get

0 1 0 0
1 0 0 0

−1 2 0 1
0 0 1

2 0


−1

=


0 1 0 0
1 0 0 0
0 0 0 2

−2 1 1 0


■

Remark 15. I want to point out the similarities between the
inverse we got and the row operations that got us there.

R1 → R2
R2 → R1
R3 → 2R4

R4 → −2R1 + R2 + R3


0 1 0 0
1 0 0 0
0 0 0 2

−2 1 1 0


If we read the operations as

(the row we go into → c1R1 + c2R2 + c3R3 + c4R4)
⇐⇒

[
c1 c2 c3 c4

]
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We get this correspondence.
c1R1 + c2R2 + c3R3 + c4R4 ⇐⇒

[
c1 c2 c3 c4

]
And, in fact, this highlights the correspondence in calculating
AB between linear combinations of the rows of the right matrix
and the rows of the left matrix. That is, the rows of A tell you
what linear combination of the rows of B to take. You can read
more here.
There was going to be an exercise about this, but I cut it. You
can see it (here).

(b)
π −e
e π

 using the formula for a 2 × 2 inverse (page 105)

Solution. The formula isa b
c d

−1

= 1
ad − bc

 d −b
−c a


ad − bc = π2 + e2, soπ −e

e π

−1

= 1
π2 + e2

 π e
−e π


■

Use the inverse found above to solve the system
πx1 − ex2 =

√
2

ex1 + πx2 = ln(2)

Solution.

1
π2 + e2

 π e
−e π

 π −e
e π

 x1
x2

 =
x1
x2


= 1

π2 + e2

 π e
−e π

  √
2

ln(2)

 = 1
π2 + e2

π√
2 + e ln(2)

π ln(2) − e
√

2


■
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5.3.1 Orthogonal Matrices Preview

9. Suppose that a, b are any two real numbers such that a2 + b2 = 1.
Consider the matrices

S =
a b
b −a

 , Q =
a −b
b a


Show that the inverse for both these matrices is just their transpose.
That is, S−1 = ST and Q−1 = QT .

Solution.

ST S =
a b
b −a

 a b
b −a

 =
a2 + b2 0

0 a2 + b2

 =
1 0
0 1

 ✓

QT Q =
 a b
−b a

 a −b
b a

 =
a2 + b2 0

0 a2 + b2

 =
1 0
0 1

 ✓

■

5.4 Cayley-Hamilton

10. Last week (4.2) we looked at the matrix

A =
 2 −1
−3 4



and when looking at Av = λv we ended up with
2 − λ −1

−3 4 − λ


(which we now recognize as A − λI). The determinant of that matrix
was λ2 − 6λ + 5.

(a) Evaluate A2 − 6A + 5I.
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Solution. 2 −1
−3 4

2

− 6
 2 −1
−3 4

 + 5
1 0
0 1


=
 7 −6
−18 19

 +
−12 6

18 −24

 +
5 0
0 5

 =
0 0
0 0


Cool. ■

(b) For a general 2 × 2 matrix
a b
c d

, you can take my word that

det
a b

c d

 − λI

 = λ2 − (a + d)λ + ad − bc

Compute
a b
c d

2

− (a + d)
a b
c d

 + (ad − bc)I

Remark 16. Notice that the constant term is the determinant
and the second highest term is the sum of the diagonal elements.
That is actually always true (for det(λI − A)).

Solution.a b
c d

2

− (a + d)
a b
c d

 + (ad − bc)
1 0
0 1

 =
 a2 + bc b(a + d)
c(a + d) d2 + bc


+
−a2 − ad −b(a + d)
−c(a + d) −ad − d2


+
ad − bc 0

0 ad − bc


=
0 0
0 0


■
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Remark 17. This does actually always happen. It’s called the
Cayley-Hamilton theorem which is far beyond the scope of this
course, but I think it’s a cool magic trick.

(c) Based on part (a), show that B = 1
5 (6I − A) is the inverse of A. I

will accept either an algebraic justification or explicit verification
that AB or BA give I.

Solution. I’ll give the algebraic justification. The explicit compu-
tation is simple enough. We have shown in part (a) that

A2 − 6A + 5I = 0 =⇒ I = 1
5(6A − A2) = 1

5(6I − A)A

Well, that’s the definition of an inverse, isn’t it? That multiplying
them together gives I (assuming they’re square)! Thus,

1
5(6I − A)A = I =⇒ 1

5(6I − A) = A−1

And, just to double check,

1
5(6I − A) = 1

5

4 1
3 2



which is actually equal to the
 d −b
−c a

 matrix (what is called

the adjugate) of
 2 −1
−3 4

 divided by the determinant 2(4) −

(−1)(−3). ■
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Week #6 Worksheet Solutions

6.1 Invertibility of Transformations
1. Determine if the following matrices are invertible. Explain why.

(a)


π 42 e
π 42 e
π 42 e



(b)


19 0 3
6 0 9
42 0 0


(c)

 8 −6
−4 3



(d)


1 0
1 1
1 −1



(e)


π 42 e 17
0 ln(2) 42 e
0 0 55 sin(1)
0 0 0 1984



Solution.

(a) can’t be invertible because the rows are linearly dependent (they
are identical). The columns are also all scalar multiples, and thus
linearly dependent, so the matrix can’t be invertible.

(b) Also cannot be invertible. The columns are dependent (since one
of them is zero). We can additionally see that Ae2 = 0, so the
kernel is nontrivial.

(c) Row 1 is −2 times row 2, so the rows are dependent. Thus, it’s
not invertible.

(d) This isn’t even square! Not invertible.
(e) Triangular and has all nonzero entries on the diagonal so it’s

invertible.

■
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2. Suppose A is an n × n invertible matrix. Are any of the following
situations possible?

(a) A has two identical columns

(b) A has two identical rows

(c) The columns of A do not span
Rn

(d) A−1 has linearly independent
columns

(e) ABx = 0 has a nontrivial so-
lution for some n × n matrix
B.

Solution.

(a) No, then the columns are dependent.
(b) No, then the rows are dependent.
(c) No, then the function isn’t surjective (this also means the rows

are dependent)
(d) Yes, in fact this has to be true. If A is invertible, then so is A−1.
(e) Yes, if B has a nontrivial kernel (that is, a nonzero solution to

Bx = 0), then that will also be a solution to ABx = 0, since
A0 = 0. For example, if B is the zero matrix, then everything is
a solution.

■

6.2 LU Factorization

3. Verify the LU factorization

A =
2 5
6 9

 =
1 0
3 1

 2 5
0 −6


and then use it to solve 2 5

6 9

x =
3
3


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Solution.
1 0
3 1

 2 5
0 −6

 does indeed multiply to A =
2 5
6 9

.
Then to solve the system Ax = LUx = b, the process is as follows:

• Let y = Ux
• Solve L(Ux) = Ly = b
• Solve Ux = y

Doing that we have  1 0 3
3 1 3

 ∼
 1 0 3

0 1 −6



Thus, y =
 3
−6

. Next we solve
 2 5 3

0 −6 −6

 ∼
 2 0 −2

0 1 1

 ∼
 1 0 −1

0 1 1



Therefore, x =
−1

1

. ■

6.3 Orthogonality and Orthogonal Matrices

4. Suppose for v1, v2, v3, b ∈ R3

x1v1 + x2v2 + x3v3 = b (3)
is consistent, and the vectors v1, . . . , vn have the very nice property
that

vT
i vj =

0, i ̸= j

1, i = j
(4)

where we assume that a 1 × 1 matrix is a scalar value. For example,
vT

1 v2 = vT
1 v3 = 0, but vT

1 v1 = 1. We call a set of vectors satisfying
(4) “orthonormal”.
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Remark 18. We have a mathematical way to say
0, i ̸= j

1, i = j
very

compactly. It’s

δij
..=

0, i ̸= j

1, i = j
(5)

So we can say vT
i vj = δij.

Note that the identity matrix I satisfies Iij = δij.

(a) Show that xi = vT
i b and use that to write the solution of the

system (3).

Solution. If we multiply vT
i to both sides of (3) then the RHS is

vT
i b. But on the LHS, (4) tells us that vT

i in a sense “deletes” all
the vj’s that don’t match j = i. The, we get

xi

(
vT

i vi

)
= xi(1) = vT

i b

Essentially, multiplying by vT
i isolates xi. ■

(b) Based on the previous part, conclude that any orthonormal set is
linearly independent.

Solution. If b = 0⃗, then we have that vT
i 0⃗ = 0, so

x1v1 + x2v2 + x3v3 = 0 =⇒ xi = 0

Which is the definition of being linearly independent! ■

(c) If Q is a 3×3 matrix with columns v1, v2, v3, implying the system
(3) is just Qx = b. Then explain how the previous parts have
shown
• x = QT b
• Q is invertible
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• Qx = b is consistent for all b
• Q−1 = QT

Solution. We have that

x =


vT

1 b
vT

2 b
vT

3 b

 =


vT

1
vT

2
vT

3

b = QT b

so that is the first point.
Part (b) showed the columns of this square matrix Q are linearly
independent, so Q is invertible.
Since Q is invertible, Qx = b is consistent for all b.
And, since preimages of invertible matrices are given exactly by
the inverse, and QT gives us our preimages, then QT has to be
Q−1. You can show this through other means like how through
the first bullet we get Qx = b = Q(QT b) =⇒ b = QQT b for
all b, thus QT is the inverse. But whatever. ■

6.4 Magnitudes and Angles of Vectors (Inner
Products)

5. One thing that we are often very concerned with is the angle between
vectors and their size. The way we measure these things in Rn is
typically with the dot product.
Starting with magnitude (or the size) of vectors in R2, we can use

the Pythagorean theorem to say the magnitude of v =
x
y

, which

we denote ∥v∥ is
√

x2 + y2.
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x

y

√ x
2 +

y
2

(x, y)

(a) Show that
∥v∥2 = vT v (6)

We can use this as a general definition for magnitude in Rn

(though one can also prove this result geometrically). Note that
if a vector has magnitude one, then we call it a “unit vector”.

Solution.

vT v =
[
x y

] x
y

 = x2 + y2 = ∥v∥2

■

(b) One property we should expect for magnitude is that a nonzero
vector should have a nonzero (positive) magnitude! Similarly, we
should only get a magnitude of zero when the vector is zero. This
may seem trivial, but this means we have to be careful with our

definition. Show that if v =
1
i

 ∈ C2 (where i is the imaginary

number such that i2 = −1), then

vT v =
[
1 i

] 1
i


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does not give a sensible magnitude for the vector. We do have to
modify this definition slightly for Cn (but not by much!), but we
will focus on Rn here, though. See (9.6) for how we fix it.

Solution. [
1 i

] 1
i

 = 12 + i2 = 0

but the vector v ̸= 0, so this doesn’t work. ■

Remark 19. The proper way to define magnitude in Cn is with
∥∥∥∥∥∥∥∥∥


v1
...

vn


∥∥∥∥∥∥∥∥∥

2

= |v1|2 + . . . + |vn|2

where |z| denotes the magnitude of the complex number z. Since
|z|2 = zz, where z denotes the conjugate, this gives us

|v|2 = v∗v

where v∗ ..= (v)T is the “conjugate transpose”. Note that if v is
real, this does give us our previous definition that ∥v∥2 = vT v.
So the correct definition of magnitude of a vector in Cn and Rn is

∥v∥2 = v∗v

In general, the conjugate transpose (often called “adjoint”) is
the correct transpose. All the nice things that you get with the
transpose in Rn are obtained by the conjugate transpose in Cn

(and, again, the conjugate transpose can be used interchangably
with the tranpose in Rn), so you can pretty much always use it!

(c) In general, for Rn, we can define the dot product as follows

v · w ..= vT w = v1w1 + . . . + vnwn (7)
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Note that based on this definition v · w = w · v.
One can prove geometrically that

v · w = ∥v∥∥w∥ cos(θ) (8)

where θ is the angle between the vectors. Use (8) to explain why
vectors which are perpendicular (have an angle of 90◦) should
have a dot product of zero.
Remark 20. In mathematics, the term “orthogonal” is preferred
over “perpendicular”. Advanced linear algebra often focuses on
inner products, which explore various methods for measuring
magnitudes and angles, though the dot product is the most
common. Generally, vectors are called orthogonal if they have
an inner product of zero. For this class and assignment, we will
consider vectors orthogonal if their dot product is zero, as defined
in (7).

Solution. cos(90◦) = 0, so that expression should be zero if the
angle is 90◦. ■

6.4.1 Projectors

(d) One can also geometrically (or even with calculus) prove that the
“projection” of one vector w onto v (i.e. the vector on the span of
v closest to w) is

projv(w) = v · w
∥v∥2 v (9)

Show that
projv(w) =

vvT

vT v

w

implying that
(

vvT

vT v

)
is the matrix which projects onto v. Explain

why if v is a unit vector then the projector matrix onto v is just
vvT .
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Remark 21. We assume that expressions like wT v or vT v are
scalars that can be divided (if they are nonzero) rather than 1 × 1
matrices (since we cannot divide by a matrix). Technically, we
can rewrite

vvT

vT v
= v

(
vT v

)−1 vT

but for simplicity we will just treat dot products as scalars.

Solution.

v · w
∥v∥2 v = v

v · w
vT v

= v
vT v

(
vT w

)
=
vvT

vT v

w

■

(e) Verify that P 2 = P for

P = vvT

vT v
Solution.

P 2 =
vvT

vT v

vvT

vT v

 = v
��

��(vT v)vT

(vT v)�2
= vvT

vT v
= P

This cancellation is okay because vT v is just a scalar we can pull
in and out of the matrix/vector multiplication. ■

6.5 Orthogonal Matrices (Part II)

(f) Last week (5.3.1), I showed you the matrices

S =
a b
b −a

 , Q =
a −b
b a


where we assumed that a2 + b2 = 1, and asked you to show that
their inverses were just their transpose.
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i. Show that the columns of these matrices are unit vectors which
are orthogonal
Solution. ∥(a, b)∥2 = a2 + b2 = 1. Similarly,

b2 + (−a)2 = (−b)2 + a2 = a2 + b2 = 1

so the columns are all unit vectors.a
b

 ·
 b
−a

 =
[
a b

]  b
−a

 = ab − ba = 0

so the columns of S are orthogonal.

Similarly,
[
a b

] −b
a

 = −ab + ba = 0 so the columns of Q are

orthogonal. ■

ii. Explain how that explains why their inverse is just their trans-
pose.
Hint: the i, j entry of AB is aT

i bj where ai is the ith row of
A (as a colummn vector) and bj is the jth column of B.
Solution. Like the hint says, if we let ai be the ith column of
A, then

(AT A)ij = aT
i aj = ai · aj =

1, i = j

0, i ̸= j
= δij

Which is saying that the entries on the diagonal (when i = j)
are all 1, and everything off the diagonal (i ̸= j) is zero. That
means AT A is the idenity matrix, meaning AT is the inverse
of A (since they are square). ■

From this conclude that any matrix such that AT A = I must have
columns which are orthogonal unit vectors (i.e. “othonormal”).
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Solution. Indeed,

AT A = I ⇐⇒ (AT A)ij = (I)ij =
1, i = j

0, i ̸= j

⇐⇒ ai · aj =
1, i = j

0, i ̸= j

⇐⇒ {a1, . . . , an} are orthonormal

■

(g) We call a real square matrix with orthonormal columns (whose
inverse must be its transpose) an “orthogonal matrix”. Show that
an orthogonal matrix (that is, a matrix satisfying Q−1 = QT )
preserves angles and magnitudes by showing that
i. ∥Qv∥2 = ∥v∥2

Proof.

∥Qv∥2 = (Qv)T (Qv) = vT QT Qv = vT Iv = ∥v∥2

ii. (Qv) · (Qw) = v · w
Proof.

(Qv) · (Qw) = (Qv)T (Qw) = vT QT Qw = vT Iw = v · w

Remark 22. The second property actually implies the first. Ad-
ditionally, the property ∥Qv∥2 = ∥v∥2 actually proves that
Q is injective (has a trivial kernel), since if Qv = 0, then
∥v∥ = ∥Qv∥ = ∥0∥ = 0 implying that v = 0 (since only the
zero vector has a magnitude zero).
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6.6 Eigenvectors of Symmetric Matrices

(h) I mentioned before that you have no idea how amazing Symmetric
matrices are. This is one the main reasons.
Suppose S = ST is symmetric and has two nonzero magical
(eigen)vectors v and w with two different magical (eigen)values.

Sv = λv, Sw = µw

where λ ̸= µ. Show that v and w are orthogonal.
Hint: Use the fact that, since it’s a 1 × 1 scalar value (and thus
symmetric),

wT Sv =
(
wT Sv

)T = vT ST (wT )T = vT Sw

Solution. We have that

wT Sv = vT Sw

Then,

wT (λv) = vT (µw)
λwT v = µvT w

λ
(
wT v

)
= µ

(
vT w

)
λ (w · v) = µ (v · w)
λ (w · v) = µ (w · v)

as we said before, the dot product is commutative, so we can
change the order. However, we’re assuming that λ ̸= µ. So the
only way that

λ (w · v) = µ (w · v)

is if w · v = 0. Therefore, they must be orthogonal. ■
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Remark 23. This is an incredibly powerful property. My intention
for this exercise was to show you that orthogonality makes your
life very easy. The fact that the magical (eigen)vectors of a
symmetric matrix are orthogonal means any computations that
have to do with the magical (eigen)vectors is easier than it would
be with any other arbitrary matrix.
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Week #7 Worksheet Solutions

7.1 Vector Spaces, Subspaces
1. Which of the following are subspaces over R? If one is not a subspace,

give a linear combination of elements that is not in the set.
Remark 24. Many of these which are not subspaces break multiple or
all three requirements to be a subspace. I won’t always mention why
all three don’t work, and sometimes instead just mention the broken
rule I think is easiest to see or justify (ex. sometimes it’s faster to
say “doesn’t contain a zero vector”, but maybe it’s more intuitive to
see that it isn’t closed under scalar multiplication by 0).

(a) {x + 0i ∈ C : x ∈ R} (the real numbers)

Solution. Yes, a linear combination of real numbers is still a real
number. ■

(b) {0 + xi ∈ C : x ∈ R} (purely imaginary numbers)

Solution. Yes, a linear combination of real numbers times i is still
a real number times i.

c1(ai) + c2(bi) = (c1a + c2b)i
■

(c) Smooth functions with inputs in R (i.e. functions for which
every derivative is continuous), denoted C∞(R) under standard
addition and scalar multiplication

Solution. Yes, smooth functions are just about as well behaved as
you can hope for. The proof that they form a subspace is more
advanced, and a question for real analysis, but here we’ll just
take it as “proof by obvious”. ■
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(d) Functions f ∈ C∞(R) such that f(0) = 0.

Solution. Yes, if f(0) = g(0) = 0, then

(c1f + c2g)(0) = c1f(0) + c2g(0) = 0 + 0 = 0 ✓

■

(e) Functions f ∈ C∞(R) such that f(1) = 1.

Solution. No. Two possible justifications are
• (2f)(1) = 2f(1) = 2 ̸= 1. Therefore, it’s not closed under

scalar multiplication.
• The additive identity (the function that is 0 everywhere) is

not a part of the set.
It is also not closed under addition. ■

(f)
x
y

 ∈ R2 such that x ≥ 0 and y ≥ 0 (the first quadrant)

Solution. No, even though it contains
0
0

 and is closed under

addition, it’s not closed under scalar multiplication (by negative

scalars). −
1
1

 =
−1
−1

 is not in the set even though
1
1

 is. ■

(g) Polynomials of degree exactly n in Rn[x]

Solution. No. This breaks all three subspace rules, but the easiest
to see is that even though xn is in the set, 0xn = 0 is not, since
it’s degree 0 not n. ■

(h) Polynomials of the form at2 ∈ Rn[t] for any a ∈ R. For which n
is this a subspace (if any)?
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Solution. Yes. c1(at2) + c2(bt2) = (c1a + c2b)t2 so it’s closed under
linear combinations. n ≥ 2 is necessary. If n < 2, then t2 isn’t
even a member of the set! If n ≥ 2, then everything is still fine,
since at2 is either degree 0 or 2 (if a = 0 or not respectively),
which is sufficiently less than or equal to n if n ≥ 2. ■

(i) For some fixed matrix A, vectors of the form x = Ay

Solution. Yes. c1(Ax1) + c2(Ax2) = A(c1x1 + c2x2) so it’s closed
under linear combinations. ■

Remark 25. Thus, the image of A is a subspace.
(j) For some fixed matrix A, vectors x such that Ax = 0⃗

Solution. Yes. A (c1x1 + c2x2) = c1Ax1 + c2Ax2 = 0⃗ + 0⃗ = 0⃗ so
it’s closed under linear combinations. ■

Remark 26. Thus, the kernel of A (the solution space to a homo-
geneous equation) is a subspace.

(k) For some fixed A ∈ R2×2, vectors x such that Ax =
1
1


Solution. No, the set does not contain 0⃗ (and it’s not closed under
scalar mult. or addition). ■

Remark 27. Thus, the solution space to a nonhomogeneous equa-
tion is not a subspace, while a homogeneous solution space is.

(l) span{v1, . . . , vk} for v1, . . . , vk ∈ Rn

Solution. Yes. Linear combinations are closed under linear com-
binations! ■

Remark 28. Every subspace can be written as the span of some
set of vectors. In a way, span is the only kind of subspace there
is!
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7.1.1 Differential Equations Teaser

(m) Solutions of the differential equation y′′ + y = 0.

Solution. Yes, because the derivative is linear. We can see 0′′+0 =
0, so the additive identity is in the set. Next, say y1, y2 are both
solutions.

(y1 + ky2)′′ + (y1 + ky2) = y′′
1 + ky′′

2 + y1 + ky2

= (y′′
1 + y1) + k(y′′

2 + y2) = 0 + k0 = 0
Thus, it’s closed under linear combinations. ■

Remark 29. In differential equations, this is called the solution
space of a “linear homogeneous differential equation”.

(n) Solutions of the differential equation y′′ + y = 1.

Solution. If y is such a solution, then
(2y)′′ + (2y) = 2y′′ + 2y = 2(y′′ + y) = 2 ̸= 1

Thus, it is not closed under linear combinations. ■

Remark 30. In differential equations, this is called the solution
space of a “linear nonhomogeneous differential equation”.
It’s not a coincidence that the solution space to a homogeneous dif-
ferential equation is a subspace and not so for a nonhomogeneous
equation, just like it is for linear systems.

(o) Vectors in R3 with at least one entry that is zero.

Solution. No. Though closed under scalar multiplication, and
though it contains 0⃗, it is not closed under addition.

1
0
0

 +


0
1
1

 =


1
1
1


Though both vectors on the left are in the set, their sum is
not. ■
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(p) Is Q (the rational numbers) a subspace of the real numbers?

Solution. 0 is a rational number, and rational numbers are closed
under addition, but if our scalars are allowed to be real, then
it cannot possibly be closed under scalar multiplication. For
example, √

2︸︷︷︸
scalar

· 1︸︷︷︸
vector

=
√

2︸︷︷︸
vector

■

2. The following IS a vector space (you don’t have to prove it). Deter-
mine what the additive identity is (Hint: It is not the real number
0).

V = R+ = {x ∈ R : x > 0} ,

x ⊕ y ..= x · y

c ⊗ x ..= xc

That is, strictly positive (this means nonzero, nonnegative real num-
bers) where “vector addition” is defined as real number multiplication
and “scalar multiplication” is defined as real number exponentiation.

Solution. If “addition” is multiplication, then the thing that you
“add” (multiply) which won’t change things is the number 1.

1︸︷︷︸
vector

⊕ x︸︷︷︸
vector

= 1 · x︸ ︷︷ ︸
vector

= x︸︷︷︸
vector

Another way to check (or do the problem, I suppose) is to use the
theorem that 0︸︷︷︸

scalar
· v︸︷︷︸

vector
= 0⃗︸︷︷︸

vector
. Then,

0︸︷︷︸
scalar

⊗ 2︸︷︷︸
vector

= 20︸︷︷︸
vector

= 1︸︷︷︸
vector

■
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7.2 Column Space, Null Space

3. Let v1 =


1
0

−1

, v2 =


1
1
1

, v3 =


3
1

−1

, p =


0
1
2

, and A = [v1 v2 v3].

(a) How many linearly independent vectors are in {v1, v2, v3}?
(b) What is the dimension of Col A?
(c) Is p in Col A? Why or why not?
(d) Is p in the subspace generated by {v1, v2, v3}

Solution. Parts a,b,c,d can all be answered by row reducing the
matrix A augmented with p, but I’d like to make two observations
• (a) and (b) are the same question. The dimension of Col A,

which is the span of the columns, is the number of linearly
independent vectors. In general, the dimension of the span
of some set of vectors is the number of linearly independent
vectors there are in the set.

• (c) and (d) are the same question. Again, Col A is the span
of the columns, so being in Col A is to be in the span of the
columns. And the “subspace generated by” a set of vectors is
just the span of those set of vectors!

So, row reducing,


1 1 3 0
0 1 1 1

−1 1 −1 2

 ∼


1 0 2 −1
0 1 1 1
0 0 0 0


(a)&(b): A has 2 pivots, which means there are 2 linearly independent

columns which means the dimension of Col A is 2 .
(c)&(d): The system Ax = p is clearly consistent, based on the REF

matrix not having any 0 = 1 rows, so p must be in the column
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space. Specifically, based on the solution to the system, we
can see that

p = −v1 + v2

(which you can verify). Therefore, p is in the span of the v
vectors, which is exactly what it means to be in the subspace
generated by the v vectors.

■

(e) Is p is in Nul A?

Solution. This isn’t directly answered by row reduction, but this
is the easiest one to check.
p ∈ ker(A) is the same as saying Ap = 0⃗.
Just looking at the first entry of

1 1 3
0 1 1

−1 1 −1



0
1
2

 =


7
 ̸=


0
0
0


then it can’t be in the null space/kernel. ■

4. Consider the conjugation operation
f : C → C, f (a + bi) = a − bi

(a) Show f IS a linear transformation on C as a real vector space
(with real scalars).

Solution.

f
(
(a + bi) + k(c + di)

)
= f

(
(a + kc) + (b + kd)i

)
=
(
a + kc

)
−
(
b + kd

)
i

=
(
a − bi

)
+ k

(
c − di

)
= f

(
a + bi

)
+ kf

(
c + di

)
■
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(b) Show that f is NOT a linear transformation if our scalars are
allowed to be complex.
Hint: The only thing that changed is our ability to use i as a
scalar. Check f(i (a + bi))!

Solution. If this is a linear transformation, then f

i
(
a + bi

)
should be equal to i f

(
a + bi

)
.

f

i
(
a + bi

) i f
(
a + bi

)
= f

(
− b + ai

)
= i (a − bi)

−b − ai ̸= = b + ai

Thus, if the scalars are allowed to be complex, then this conjuga-
tion operation doesn’t preserve scalar multiplication. So it’s not
a linear transformation if the scalars can be complex.
Alternate quicker solution: We should expect
f(−1) = f(i(i)) = if(i). But

f(−1) = −1 ̸= i(−i) = 1

■

7.3 The Derivative Operator

7.3.1 On Polynomials

5. Consider the linear transformation

D : R2[x] → R2[x], D
(
a0 + a1x + a2x

2) = a1 + 2a2x + 0x2

(a) Which familiar operation from calculus is this linear transforma-
tion equivalent to?
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Solution. This is the derivative operation. ■

(b) Find the kernel and image of D

Solution. If something is in the kernel of D, then its derivative
must be zero. We know from calculus that a constant has a
derivative of zero, so

ker(D) = {Constant polynomials} = span {1}

We can also see that the the image appears to be all first degree
polynomials or lower (span {1, x}). One way to see this is that
1 has a preimage (x), and x has a preimage x2

2 , but x2 has no
preimage (since we are restricted to degree 2 or lower polynomials
in our domain, we cannot use x3

3 ). ■

Remark 31. Notice that the vector 1 is both in the image and the
kernel.

(c) Find a matrix A such that

A


a0
a1
a2

 =


a1
2a2
0


and describe its relation to D.

Solution. First of all, we can see that A is in pretty much every
way the same thing as D, but on R3 vectors instead of the
polynomials of R2[x]. If we rewrite D in the following way, we
can see it’s the same thing except we are just not writing the
powers of x or + signs.

D


a0

+a1x
+a2x

2

 =


a1

+2a2x
+0x2

 , A


a0
a1
a2

 =


a1
2a2
0


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One way to obtain A is to use the fact that the ith column is
given by the image of ei. So, based on the definition,

A


a0
a1
a2

 =


a1
2a2
0



• A


1
0
0

 =


0
0
0

 is the first col

• A


0
1
0

 =


1
0
0

 is the second col

• A


0
0
1

 =


0
2
0

 is the third col

=⇒ A =


0 1 0
0 0 2
0 0 0



■

(d) Compute both A2 and D2 and compare them

Solution.
D2 (a0 + a1x + a2x

2)

A2 =


0 0 2
0 0 0
0 0 0

 = D (a1 + 2a2x + 0x2)

= (2a2 + 0x + 0x2)

and, indeed, A2


a0
a1
a2

 =


2a2
0
0

. Thus, squaring A tells us exactly

what applying D twice does. ■

(e) Compute A3 and describe its image and kernel. Confirm you get
the same result as D3. Based on the operation you likened D to
in part (a), why is the result of A3 expected?
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Solution.
D3 (a0 + a1x + a2x

2)

A3 =


0 0 0
0 0 0
0 0 0

 = D (2a2 + 0x + 0x2)

= (0 + 0x + 0x2)

The image of the zero matrix is just
{⃗
0
}
, and ker(A3) = R3. This

is because everything gets sent to 0⃗, so the image is only that
vector, and the kernel, which is all the vectors that get sent to 0⃗
is thus everything (i.e. R3 since it’s a 3 × 3 matrix).
This is exactly what we would expect for “what happens” when
you take three derivatives of any polynomial of degree 2 or less.
It’s always going to be zero! ■

Remark 32. A matrix for which some power gives the zero matrix
is called “nilpotent”. Nilpotent operators have a lot of interesting
properties. But the primary characterization is that the image
is “contained” in the kernel in such a way that the kernel “eats
up” the image until eventually there’s nothing left and it all goes
to zero. Which makes sense for the derivative on polynomials,
right? The degree always goes down by one until it’s zero.
If you consider eigenvectors as “the good guys” of linear algebra,
then, in a way, nilpotent operators are “the bad guys”. Nilpotent
is essentially the ingredient necessary for there to not be enough
eigenvectors. And when an operator doesn’t have enough eigen-
vectors, it develops “nilpotency pneumonia” (a phrase I literally
just made up that means it is not “diagonalizable”).
MATH132 is a course that spends a large majority of its content
on how to “fight back” against operators that have a bad case of
“nilpotency pneumonia”, using the “Jordan form”. The Jordan
form is a way to deal with “bad matrices” that is as close to as
nice as matrices which have a full set of eigenvectors (i.e. a form
where they are diagonalizable).
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7.3.2 Differential Equations Introduction

6. We can consider the derivative operator D in general on the set of
smooth functions C∞(R) by

D(f(x)) = f ′(x)

(a) What is the kernel of D?

Solution. Again, all constant functions. So, span {1}. ■

(b) Find one example of a nonzero magical vector (i.e. function) of
D that stays the same after applying D

D(f(x)) = f(x)

Hint: What is a nonzero function that is equal to its own deriva-
tive?

Solution. f(x) = ex is a great example. ■

(c) Use the previous part to find a nonzero solution y1(x) to

y′(x) − y(x) = 0

(this requires no scratch work)

Solution. y1(x) = ex is a solution since y′ = y ⇐⇒ y′−y = 0 ■

(d) If we define the operator L = D − I (you can assume that it is
linear), then

L[y] = y′ − y

Explain why the function you found above y1 ∈ ker(L).

Solution. If y′ − y = 0, then that literally means L[y] = 0. So it
must be in ker(L). Thus, ex ∈ ker(L). ■
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(e) Since the kernel is a subspace, give an expression that yields
infinitely many solutions to the differential equation y′ − y = 0.
Hint: Being a subspace means it’s closed under linear combina-
tions (specifically, scalar multiplication)!

Solution. The kernel is closed under scalar multiplication, so 2ex,
3ex, −ex, πex, etc. will all be in the kernel. Thus, y = Cex for
any C ∈ R will be in the kernel.
Since the kernel is the homogeneous solutions space, then

y = Cex, C ∈ R

is an expression for infinitely many solutions. ■

Remark 33. This is actually the “general solution”. That is, every
solution to y′ − y = 0 is of the form Cex. So, congrats, you may
have just solved your first differential equation!
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Week #8 Worksheet Solutions

8.1 Dimension and Basis

1. Find a basis of Col A where A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

.
Use the standard method detailed in section 4.3 of the textbook so
that everyone gets the same answer.

Solution.

A ∼


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0


so the pivot columns are columns 1, 3, 5, so the first, third, and fifth
column form a basis for Col A.

Col A = span




1
3
2
5

 ,


0
1
1
2

 ,


−1
5
2
8




■

2. Consider the subspace W =



s
s
0

 : s ∈ R

. We can say that


s
s
0

 = s


1
0
0

 + s


0
1
0


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Hence, every element of W is a linear combination of e1, e2.

(a) Is W contained in span {e1, e2}?

Solution. Yes. Every element has been shown to be a linear
combination of e1, e2, so W must be contained in the span. ■

(b) Is {e1, e2} a basis for W? If not, find a correct basis for W .

Solution. No, neither e1 nor e2 are actually in W ! There’s no

value of s that can make


s
s
0

 =


1
0
0

. One can see this as W being

the set of vectors with identical first and second entries, and a
zero in the third entry. Neither e1, e2 have identical first entries
so they aren’t part of the set. A basis must be made up of vector
in the space!

However,


s
s
0

 = s


1
1
0

, so it seems we can write every element of

W as a linear combination of


1
1
0

 uniquely! Thus, a basis is



1
1
0




(Any nonzero scalar multiple would also be a valid basis) ■

3. Let v1 =


1

−2
3

 and v2 =


−2
7

−9

. Determine if {v1, v2} is a basis for

R3. Is it a basis for R2?
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Solution. The vectors are certainly linearly independent, but they
cannot span R3 because no set of only two vectors can span a three
dimensional space!
However, it is also definitely not a basis for R2, because the vectors
aren’t in R2! So it’s NOT A BASIS FOR R2 . ■

Remark 34. Was I expecting you to say it was a basis for R2? Yes,
pretty much. But don’t worry, every single student I’ve ever worked
with (and that is a lot of students) has said the same thing. As I
said in discussion, this is just a pet peeve of mine. But while strictly
incorrect, your intuition is actually in the right place. Here is an
explanation for how:
The span of the two vectors is two dimensional, so the span is
isomorphic to R2, but not equal to R2. One such isomorphism is

the coordinate map from R2 to W = span




1
−2
3

 ,


−2
7

−9




ϕ : R2 → W, ϕ

c1
c2

 = c1


1

−2
3

 + c2


−2
7

−9


It can be shown this map is a bijection.

4. The following is a matrix A and an echelon form of A.

A =



−3 9 −2 −10
−3 9 −2 −10
2 −6 4 4
3 −9 −2 14
3 −9 −2 14


∼



1 −3 0 4
0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0


(a) Find a basis for Col A, Row A, and Nul A.
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Solution. The pivot columns are columns one and three, so a
basis for Col A is

Col A = span





−3
−3
2
3
3


,



−2
−2
4

−2
−2




the nonzero rows of the row echelon form of A give the basis

Row A = span




1

−3
0
4

 ,


0
0
1

−1




And we can, by inspection, see from taking linear combinations
of the columns that a basis for the Null space (kernel) is

Nul A = span




3
1
0
0

 ,


−4
0
1
1




■

(b) State the dimension of those subspaces and the rank and nullity
of the matrix.
Solution. All three subspaces have dimension 2, since their basis
each has two elements. The rank is subsequently 2 (the dimension
of the column space) and the nullity is 2 (the dimension of the
kernel/null space). ■

(c) The following is AT and an echelon form of AT .

AT =


−3 −3 2 3 3
9 9 −6 −9 −9

−2 −2 4 −2 −2
−10 −10 4 14 14

 ∼


1 1 0 −2 −2
0 0 2 −3 −3
0 0 0 0 0
0 0 0 0 0


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Explain why

i.




−3
9

−2
−10

 ,


2

−6
4
4




is another basis for Row A

ii.





1
1
0

−2
−2


,



0
0
2

−3
−3




is another basis for Col A

Solution. The pivot columns of AT give a basis for Col AT

(which is Row A), and the nonzero rows of a sufficiently
reduced echelon form (with a minimal number of nonzero
rows/maximal number of zero rows) of AT give a basis for
Row AT (which is Col A). ■
Remark 35. Note that this basis for Col A is MUCH nicer.
But it’s harder to verify that it is actually in the column space
(so, not as good for an exam where your professor has to be
able to check your work. but it is an objectively better basis
that’s easier to work with).

iii. If we augment AT with I and row reduce, we can obtain
1 1 0 −2 −2 0 0 1/8 −1/8
0 0 1 −3/2 −3/2 0 0 5/16 −1/16
0 0 0 0 0 4 0 −1 −1
0 0 0 0 0 0 4 3 3


Consider the rows of the right matrix corresponding to the
zero rows of the left matrix,


4
0

−1
−1

 ,


0
4
3
3




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verify that this is another basis for Nul A.
Solution. You can confirm that

−3 9 −2 −10
−3 9 −2 −10
2 −6 4 4
3 −9 −2 14
3 −9 −2 14




4 0
0 4

−1 3
−1 3

 =



0 0
0 0
0 0
0 0
0 0


Since these are two clearly linearly independent vectors in the
kernel (dimension 2), then it’s also a basis. This is sufficient.
However, if we compare the bases,


4
0

−1
−1

 ,


0
4
3
3




new

vs.




3
1
0
0

 ,


−4
0
1
1




old

we can see some interesting similarities. The first of the new
basis is −1 of the second of the original basis. And we can
also see pretty easily that the second of the new basis is 4 of
the first of the old basis +3 of the second of the old basis.
I just think it’s cool you can get a basis for the Row, Col, and
Nul spaces of A all in one shot by row reducing AT . ■

Remark 36. Why does this work, though? Well, when row re-
ducing A, we find which columns are independent by identifying
pivot columns, and we get a basis for the row space by taking
linear combinations of the rows of A (that is what row reduction
is) until we get rows that are clearly independent.
When we row reduce AT augmented with I, we get[

AT I
]

→
[

REF(AT ) B
]

where B is a matrix such that BAT = REF(AT ). By row perspec-
tive, this means the rows of B corresponding to the rows of AT
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that become zero are coefficients for linear combinations of rows
of AT (columns of A) that give zero. But that’s just the kernel
of A! It’s linear combinations of the columns of A that give zero.
So this is one way to do it all very quickly and algorithmically.

8.2 Coordinate Vectors

5. Find the vector x determined by the given coordinate vector [x]B and
the given basis B. (Think of this as using a dictionary to translate a
sentence in a foreign language to your own.)

B =

1
1

 ,

 2
−1

 , [x]B =
3
2



Solution. The coordinate vector just tells us the coefficients for the
linear combination so

x = 3
1
1

 + 2
 2
−1

 =
7
1


■

6. The vector x is in a subspace H with a basis B = {b1, b2}. Find the
B-coordinate vector of x. (Think of this as using a dictionary to
translate words in your language to a foreign language.)

b1 =
 1
−3

 , b2 =
−3

5

 , x =
−7

13



Solution. Here we need to find the linear combination, so we need to
find c1, c2 such that

c1

 1
−3

 + c2

−3
5

 =
−7

13


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Solving this system by row reducing or by inspection yields c1 =
1, c2 = −2. So

[x]B =
 1
−2


■

7. Find a basis for the following subspaces, and determine the dimension.

(a) Symmetric 2 × 2 matrices

Solution. A generic symmetric 2 × 2 matrix is of the forma b
b c


The only necessary requirement is that the 12 and 21 entry are
the same. The diagonal entries don’t matter at all. We can write
this generic element as

= a

1 0
0 0

 + b

0 1
1 0

 + c

0 0
0 1


Which gives us a basis

1 0
0 0

 ,

0 1
1 0

 ,

0 0
0 1


This is a basis because it definitely spans the space, and the
representations are unique (equivalently, they are clearly linearly
independent). ■

(b) Vector in R3 such that x1 − 2x2 + x3 = 0

Solution. We can see that x1 = 2x2 − x3.
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If we call this subspace W , then a generic element of this subspace
must be of the form

x1
x2
x3

 =


2x2 − x3

x2
x3

 = x2


2
1
0

 + x3


−1
0
1


Which gives one potential basis of


2
1
0

 ,


−1
0
1




This is not the only basis possible. Other possible solutions can
be found by solving for x3, or considering this a 1 × 3 system of
equations (but this list is certainly not exhaustive). ■

8. In one sentence, each, explain why each set is or is not a basis of R3.
No scratch work is required for any of these.
Remark 37. To solve this, we are going to use our trick that we need
the “right number of vectors” (the dimension, which is 3 in this case),
and that they are linearly independent. If either one of those is not
satisfied, it’s not a basis. If both are satisfied, then it is a basis.
This is nice because counting and determining independence is much
easier than verifying span.

(a)


1

−3
2

 ,


0
4

−3

 ,


0
0
9


Solution. Clearly linearly independent because it has a triangular
form, and there are the right number of vectors, so it is a basis. ■

(b)


1

−3
0

 ,


−2
9
0

 ,


0
0
0


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Solution. No set with the zero vector is linearly independent, so
this is not a basis. ■

(c)


1
1
1

 ,


1
2
4

 ,


1
3
9

 ,


1
4
16


Solution. Too many vectors. Not a basis. ■

(d)


1
2

−3

 ,


−4
−5
6


Solution. Too few vectors. Not a basis. ■

9. Using a row reduction calculator, find a basis for the space spanned
by the given vectors, v1, . . . , v5.


1
0

−3
2

 ,


0
1
2

−3

 ,


−3
−4
1
6

 ,


1

−3
−8
7

 ,


2
1

−6
9


Solution. The row reduced matrix gives pivot columns 1,2,4. There-
fore a basis for the span is {v1, v2, v4} ■

10. Use coordinate vectors to test if the sets of polynomials

(i) Are linearly independent
(ii) Span R2[x]
(iii) Form a basis of R2[x]

Explain your work. 
x − 2x2,

1 − 2x2,

1 + 10x + x2,
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Solution. The coordinate vectors are
0
1

−2

 ,


1
0

−2

 ,


1
10
1


From here, we can determine these things in many ways. The fastest
way here is to note that the first two vectors are clearly linearly
independent. Thus, the only way for the whole set to be dependent
is if we can write the third vector as a linear combination of the first
two. We would need 1 of the first vector and 10 of the second. But

1


0
1

−2

 + 10


1
0

−2

 ̸=


1
10
1


so this set is linearly independent.
Since R2[x] is three dimensional, and we have three linearly indepen-
dent vectors, we know that it spans the space and is a basis (by one
of the provided theorems). ■

8.3 Eigenvectors Proper

11.
Definition 38. A nonzero vector which is merely scaled by a linear
transformation is called an eigenvector (what we have been calling
magical vectors). The factor by which it scales is called its eigenvalue.
Ex. if
T (v) = 7v
and v ̸= 0, then v is an “eigenvector of T with eigenvalue 7”.
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Suppose we have a transformation T : R3 → R3 with three nonzero
magical eigenvectors v1, v2, v3

T (v1) = 1
1v1

T (v2) = 1
2v2

T (v3) = 1
3v3

We are going to show the following facts:

• The eigenvectors are linearly independent because they have
different eigenvalues

• The eigenvectors form a basis B = {v1, v2, v3} we call the
eigenbasis.

• This basis makes it very easy to calculate multiple applications
of T .

(a) Suppose we have a linear combination that yields zero

c1v1 + c2v2 + c3v3 = 0⃗ (*)

i. Apply T − I to both sides, and let that be a second equation.
Solution. Clearly (T − I )⃗0 = 0⃗, and we can also see that

(T − I)vj =
(1

j
− 1

)
vj

So we get
0⃗ − 1

2c2v2 − 2
3c3v3 = 0⃗ (**)

■

ii. Apply T − 1
2I to both sides of your second equation and let

that be a third equation. What must c3 be?
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Solution. Similarly,
(
T − 1

2I
)

vj =
(

1
j − 1

2

)
vj so

0⃗ + −2
3c3

(
−1

6v3

)
= 0⃗ (***)

=⇒ c3 = 0 ■

iii. Based on what you found c3 to be, what does your second
equation imply about c2?
Solution. In (∗∗), we can see that if c3 = 0, then c2 = 0. ■

iv. Conclude the value of c1 and that B must be linearly indepen-
dent.
Solution. Plugging in c2 = c3 = 0 in (*) gives c1 = 0. There-
fore, we have shown that the set is linearly independent. ■

v. Why is B a basis?
Solution. We have a linearly independent set of three vectors
in R3 (dimension 3), so it’s a basis. ■

(b) Based on the linear independence of B, we can say

c1v1 + 1
2c2v2 + 1

3c3v3 = 0⃗ =⇒ c1 = c2 = c3 = 0

Explain how this proves that T is invertible.
Hint: What is T (c1v1 + c2v2 + c3v3)?

Solution. If x = c1v1 + c2v2 + c3v3 is in ker(T ) (since B is a
basis, we know that any x ∈ ker(T ) can be written as a linear
combination of the v vectors uniquely), then T (c1v1 + c2v2 +
c3v3) = c1v1 + 1

2c2v2 + 1
3c3v3 = 0⃗ But we’re given that this implies

ci = 0 (since the vectors are linearly independent). So x = 0⃗ and
thus all elements of the kernel are 0⃗. Therefore, T has a trivial
kernel, so it’s invertible (since it’s an operator, we can use the
invertible matrix theorem or whatever). ■
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8.3.1 Preimage of Eigenvectors

(c) Clearly, v1 is a preimage of itself. Find a preimage of v2 (hint:
it’s a scalar multiple of v2). Use the same logic to find a preimage
of v3 without doing any scratch work.

Solution. We can see that if

T (kv2) = k

2v2 = v2 =⇒ k = 2 =⇒ 2v2 = v2
1
2

is a preimage of v2. Similarly, 3v3 = v3
1
3

is a preimage of v3. That
is, we just divide by the eigenvalue! This is also consistent with
v1 = v1

1 ■

8.3.2 Diagonalization Introduction (Part II)

(d) Suppose that x ∈ R3 and [x]B =


c1
c2
c3

.
i. Compute [T (x)]B

Solution. T (c1v1 + c2v2 + c3v3) = c1v1 + 1
2c2v2 + 1

3c3v3 has
coordinate vector

[T (x)]B =


c1
1
2c2
1
3c3


■

ii. Compute [T n(x)]B (where n ≥ 1).

Solution. [T n(x)]B =


c1(1

2

)n
c2(1

3

)n
c3

 ■

iii. Does your formula above work for n = 0 (assuming T 0 ..= I)?
What about negative values of n?
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Solution. Yes. For n = 0, we retrieve the original

[x]B =


c1
c2
c3

, for n = −1, we get an answer consistent with our

preimages [T −1(v)]B =


c1
2c2
3c3

, and we can see that this will

work for all n ∈ N. ■
iv. Based on what we’ve done, show that

[T n(x)]B =


1 0 0
0 1

2 0
0 0 1

3


n

[x]B

Solution.

[T n(x)]B =


1nc1(1
2

)n
c2(1

3

)n
c3



=


1n 0 0
0 (1

2)n 0
0 0 (1

3)n



c1
c2
c3

 =


1 0 0
0 1

2 0
0 0 1

3


n

[x]B

■

8.3.3 Markov Chains Introduction

v. What is limn→∞ T n(x)? Conclude that you only need to know
the coordinate on v1 to know the “end behavior” of repeated
application of T .
Solution. As n → ∞,

(1
2

)n
,
(1

3

)n → 0 so

[T n(x)]B →


c1
0
0


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Thus,
T n(x) → c1v1

and c2, c3, v2, v3 have no impact on the limit. Therefore, we
need only find v1 and c1 to know the limiting behavior. ■

(e) The following matrix DOES have eigenvalues 1, 1
2 , 1

3 .

A =


2/3 1/3 0
1/6 1/2 1/3
1/6 1/6 2/3


This is actually a very special type of matrix called a Markov or
Stochastic matrix, which is used in a number of applications.
An eigenvector of A with eigenvalue 1, called “the steady state

vector” is v1 =


1
1
1

. Verify this.

Solution.
2/3 1/3 0
1/6 1/2 1/3
1/6 1/6 2/3



1
1
1

 =


2/3 + 1/3

1/6 + 1/2 + 1/3
1/6 + 1/6 + 2/3

 =


1
1
1

 ✓

■

(f) Suppose we have three initial vectors, x1, x2, x3 with coordinate
vectors

• [x1]B =


1/3
0

0.27



• [x2]B =


1/3
π/8
0.13



• [x3]B =


1/3

0.12315
3/7


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with respect to an eigenbasis B = {v1, v2, v3} (where v2 is an
eigenvector of A with eigenvalue 1

2 and v3 is an eigenvector of A
with eigenvalue 1

3 just like before).
Find limn→∞ T n(xj) for j = 1, 2, 3.

Solution. We know the limit will be c1v1 by part d v., and c1 = 1
3

in all three cases. Therefore, the limits are all

lim
n→∞ T n(xj) = 1

3


1
1
1

 =


1/3
1/3
1/3


■

Remark 39. We can conclude that this matrix, over time, spreads
out the entries evenly. Something not entirely obvious just by
looking at it. In fact, we can say

lim
n→∞


2/3 1/3 0
1/6 1/2 1/3
1/6 1/6 2/3


n

=


1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


We can also conclude that all probability vectors (vectors with

positive entries that add up to 1) will approach


1/3
1/3
1/3

 in this

Markov chain.
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Week #10 Worksheet Solutions

9.1 Rank Nullity
1. Suppose A is a 3 × 8. If the rank of A is 2, then what is

(a) the rank of AT ?
(b) the nullity of A?
(c) the nullity of AT ?

Solution. The rank of A and AT are always the same, so rank(AT ) =
2.
A has 8 columns, so the rank and nullity must add up to 8. If A has
rank 2, then it must have nullity 6.
AT has 3 columns, so the nullity and rank must add up to 3. Rank
is 2, so nullity is 1. ■

9.2 Eigenvectors and Eigenvalues

Remark 40. A nice shorthand for the words “eigenvalue” and “eigen-
vector” are “ew” and “ev” respectively. This comes from the German
origin of the words

Eigenwert (ew) ⇐⇒ Eigenvalue
Eigenvektor (ev) ⇐⇒ Eigenvector
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9.2.1 Preimages of Eigenvectors

2. Suppose that v ̸= 0 is an eigenvector of T with eigenvalue λ.

T (v) = λv

(a) Find a simple formula for a preimage of v under T in terms of v
assuming λ ̸= 0. Does it work for λ = 0?

Solution. Just divide by the eigenvalue! We saw this in (8.3.1).

x = v
λ

This is easy to derive. If we suppose our preimage is kv, then

v = T (kv) = kλv =⇒ k = 1
λ

No, this does not work for λ = 0. If λ = 0, then there is no
simple preimage in terms of v (in fact, you should hope there
is no preimage at all! If a nonzero kernel vector is in the image,
that means the operator is trouble (nondiagonalizable)).
If you are interested in why this is the case, suppose that there is
an eigenbasis for T , and suppose x ∈ ker(T ) ∩ im(T ), and show
that x = 0⃗. ■

(b) Show that this is equivalent to v ∈ ker(T − λI).
We call Eλ(T ) ..= ker(T −λI) the eigenspace of T with eigenvalue
λ, which is the subspace that contains all eigenvectors with
eigenvalue λ (and 0⃗).

Solution.

Tv = λv ⇐⇒ Tv − λIv = 0⃗ ⇐⇒ (T − λI)v = 0⃗
⇐⇒ v ∈ ker(T − λI) ⇐⇒ v ∈ Eλ(T )

■
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9.2.2 Polynomials in Operators

(c) Show that v is also an eigenvector of T 2 with eigenvalue λ2.

Solution.

T 2(v) = T (Tv) = T (λv) = λT (v) = λλv = λ2v

■

(d) Use the same logic to conclude that v is an eigenvector of T n

with eigenvalue λn (if n ≥ 0).

Solution. If applying T scales by λ, then applying T n times is
the same as scaling by λ n times. So

T n(v) = λnv

■

Remark 41. This actually works for all n if T is invertible.
(e) Given a polynomial p(x) = p0 + p1x + . . . + pnxn, we define the

polynomial operator

p(T ) ..= p0I + p1T + . . . + pnT n

=⇒ p(T )v ..= p0v + p1T (v) + . . . + pnT n(v)

Show that v is an eigenvalue of p(T ) with eigenvalue p(λ).

Solution. We can write p(x) = ∑n
j=0 pnxn. So

p(T )v = ∑n
j=0 pnT n(v). Then,

p(T )v =
n∑

j=0
pnλnv =

 n∑
j=0

pnλn

v = p(λ)v

■
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(f) If p(λ) ̸= 0, use part (a) to find a preimage of v under p(T ).

Solution. Divide by the eigenvalue!

x = v
p(λ)

■

(g) Suppose that the polynomial p has a root at x = λ (i.e. p(λ) = 0).
Show that v ∈ ker(p(T )).

Solution. If p(λ) = 0, then

p(T )v = p(λ)v = 0v = 0⃗ =⇒ v ∈ ker(p(T ))

■

(h) Suppose that p(x) = (x − 1)(x − 2) and v1 is an eigenvector of T
with eigenvalue 1 and v2 is an eigenvector of T with eigenvalue 2.
Show that

c1v1 + c2v2 ∈ ker(p(T ))

Solution. p(T )v1 = p(1)v1 = 0v1 = 0⃗. Since p(1) = (1 − 1)(1 −
2) = 0. Thus, it’s in the kernel. Similar for v2 since p(2) = 0.
Since the kernel is a subspace (closed under linear combinations),
then any linear combination of v1, v2 is in the kernel. ■

9.3 Differential Equations Introduction (Part II)

3. A couple weeks ago (7.3.2), we looked at the differential (deriva-
tive) operator on the space of smooth functions D : C∞(R) →
C∞(R), D (y) = y′, and we found that et was an eigenvector with
eigenvalue 1.
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(a) Show that eλt is an eigenvector of D with eigenvalue λ, for any
λ ∈ R.

Solution. D
(
eλt

)
= d

dte
λt = λ

(
eλt

)
Thus, applying D just scales it by λ.
Since eλt ̸= 0 (it’s not just the zero function), then it’s an eigen-
vector. Also, this works for any λ. ■

9.3.1 Polynomial Differential Operators

(b) The most important form of differential equation is p(D)y. p(D)
is called a “polynomial differential operator”, and it describes a lot
of physical systems like masses on a spring, circuits, kinematics,
and more. Using the previous problem 9.2.2 on the worksheet,
explain why eλt is an eigenvector of p(D) with eigenvalue p(λ).

p(D)eλt = p(λ)eλt

Solution. Since eλt is an eigenvector of D, it’s an eigenvector of
p(D) (as we saw in the previous question). With eigenvalue p(λ).

p(D)eλt = p(λ)eλt

■

(c) Using question 2h (in the previous problem), find two independent
nonzero solutions y1, y2 to

(D − 1)(D − 2)y = 0

in terms of eigenvectors of D. Observe that

y = c1y1 + c2y2

is also a solution (since the kernel is a subspace).
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Solution. Like we saw before, if we have an eigenvector of T with
eigenvalue 1, 2, then it’s in the kernel of (T − I)(T − 2I). This
is the same for T = D, so we just take eigenvector of D with
eigenvalue 1 and 2 (e1t and e2t) then those are two solutions
(which are independent).
Additionally, any linear combination will be in the kernel since it
is a subspace.

y = c1e
t + c2e

2t ∈ ker(p(D))

So this gives an infinite family of solutions. ■

9.3.2 Exponential Response Formula

(d) The “exponential response formula” (ERF) is an amazingly useful
technique in differential equations, and with linear algebra we
can prove it in one line using part (3b). Show that if p(α) ̸= 0,
then y = Beαt

p(α) is a particular solution to

p(D)y = Beαt

Use the ERF to find one solution to

y′′ −
√

2y′ +
√

10y = 5e
√

5t

Hint: p(x) = x2 −
√

2x +
√

10. What is the eigenvalue of 5e
√

5t?

Solution. Divide by the eigenvalue! In this case, that’s p(D)eαt =
p(α)eαt so the eigenvalue is p(α). Thus,

yp = Beαt

p(α)

For the given ODE, the RHS is 5e
√

5t, which has eigenvalue
√

5
(under D). Thus, the eigenvalue of p(D) is
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p(
√

5) =
√

52 −
√

2
√

5 +
√

10 = 5. So a particular solution is
given by dividing by 5.

yp = 5e
√

5

5 = e
√

5t

You can plug it in and see that it is indeed a solution. ■

(e) Use the logic of the previous parts and the ERF to find a two
parameter family of solutions to

(D − 1)(D − 3)y = y′′ − 4y′ + 3y = e2t

and solve for the constants to satisfy y(0) = 1, y′(0) = 2
Hint: Use the ideas of parts (c) and (d) to find a general form for
y (you should get two constants) and then plug in t = 0 for y and
y′ to solve for the initial conditions (you’ll get a 2 × 2 system).

Solution. The ERF tells us a particular solution is

yp = e2t

p(2) = e2t

−1 = −e2t

The roots are 1, 3, so we can just take eigenvectors of D with
eigenvalue 1 and 3 to get the kernel (i.e. et and e3t)

yh = c1e
t + c2e

3t

Thus the solution is of the form

y = c1e
t + c2e

3t − e2t

We want to satisfy the initial conditions so we plug in 0 to y and
y′:

y(0) = c1 + c2 − 1 = 1 =⇒ c1 + c2 = 2
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and y′ = c1e
t + 3c2e

3t − 2e2t so

y′(0) = c1 + 3c2 − 2 = 2 =⇒ c1 + 3c2 = 4

One can find the solution is c1 = c2 = 1. Thus, the solution is

y = et + e3t − e2t

You can plug it in to verify it satisfies everything. Wolfram Alpha
confirms this solution is correct. ■

9.4 Bonus Solutions: Solving p(D)y = 0

The following were never in a worksheet (this quarter), but if
you are curious about how we can use linear algebra to solve
p(D)y = 0 in general, you can read through the following solutions
and/or this blog post.

9.4.1 The Wronskian

(f) In differential equations, we call two functions y1(t), y2(t) linearly
(in)dependent on some interval if there is some point t0 in the
interval such that

det
y1(t0) y2(t0)
y′

1(t0) y′
2(t0)

 ̸= 0

This is called the Wronskian.
Using the point t0 = 0, show that y1 = eat and y2(t) = ebt are
linearly independent if and only if a ̸= b.

Solution.

det
 eat ebt

aeat bebt

 = e(a+b)t(b − a)
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At t = 0, we get b − a. The result is nonzero if and only if a ̸= b,
so they are independent on R if and only if a ̸= b. If b = a, then
the result is actually zero everywhere (so they are dependent on
all of R (not surprising, since they would be identical!)). ■

(g) Show that eit and e−it are solutions to y′′ + y = 0.

Solution. ±i are indeed roots of D2 + 1 = (D + i)(D − i). So e±it

are solutions. You can also plug them in to verify. ■

(h) Show that cos(t) and sin(t) are eigenvectors of D2 with eigenvalue
−1. Use this to get another pair of solutions to

y′′ + y = 0, y(0) = a, y′(0) = b

Solution. The derivative of cos(t) is − sin(t), and the derivative
of cos(t) is − sin(t). Thus,

D2 cos(t) = − cos(t) =⇒ (D2 + 1) cos(t) = 0

Similarly, D2 sin(t) = − sin(t) =⇒ (D2 + 1) sin(t) = 0. So

y = c1 cos(t) + c2 sin(t) ∈ ker(D2 + 1)

so this is a solution to y′′ + y = 0. Similar to previous parts, we
can solve for the constants to solve y(0) = a, y′(0) = b. We get

y(0) = c1 = a

and
y′(0) = c2 = b

So the solution is

y = a cos(t) + b sin(t)

■

125



9.4.2 Euler’s Formula

(i) It turns out the town of ker(D2+1) ain’t big enough for the two of
these solution sets

{
eit, e−it

}
and {cos(t), sin(t)}. That is, they are

linearly dependent! This is based on a more advanced existence
and uniqueness theorem for linear differential equations that says
an nth order equation has n linearly independent solutions (which
is based on linear algebra!).
Find the coefficients on cos(t) and sin(t) to form eit and e−it.
Hint: Suppose y = c1 cos(t) + c2 sin(t) = e±it. And make sure
y(0) and y′(0) are consistent with the values for e±it.

Solution.

y(0) = c1 = e±i0 = e0 = 1 =⇒ c1 = 1

y′ = −c1 sin(t) + c2 cos(t) = ±ie±it, so

y′(0) = c2 = ±i

Thus, we apparently get

e±it = cos(t) ± i sin(t)

This gives us Euler’s Formula,

eit = cos(t) + i sin(t)

■

9.4.3 Repeated Roots in Differential Equations

(j) Show that t ∈ ker(D2). Extend this logic to show{
1, t, t2, . . . , tn−1} ∈ ker(Dn)

Solution. D2t = D1 = 0. We can conclude similarly that tk

becomes zero after k+1 derivatives. So all positive integer powers
of t strictly below n will be sent to zero after n derivatives. ■
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9.4.4 Exponential Shift

(k) Show that D(eλty) = eλt(D + λ)y.

Solution.

D(eλty) = eλty′ + λeλty = eλt(y′ + λy)
= eλt(Dy + λy) = eλt(D + λ)y

■

(l) It’s possible to prove through induction that

Dn(eλty) = eλt(D + λ)ny

Use this to conclude that

p(D)(eλty) = eλtp(D + λ)y

Solution. If p(x) = ∑∞
n=0 pnxn, then

p(D)(eλty) =
∞∑

n=0
pnDn(eλty) =

∞∑
n=0

pneλt(D + λ)ny

= eλt

 ∞∑
n=0

pn(D + λ)n

 y = eλtp(D + λ)y

■

Remark. An nth order linear ODE (that is, one with an nth deriva-
tive y(n) (or when p(D) is degree n) has n linearly independent
homogeneous solutions.

(m) If we try to use our previous methods to solve

y′′′ + 3y′′ + 3y′ + y = (D + 1)3y = 0

we run into a problem trying to find more than one independent
solution. We call this a “repeated root”.
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Sure, we get y = e−t since −1 is a root. But what about the
other two we should get? We can use the last few parts to help
us out. If we suppose y = e−tu, then we get

(D + 1)3e−tu = e−t(D + 1 − 1)3u = e−tD3u = 0

Use the previous parts to show that

y = e−t(c1 + c2t + c3t
2)

is a solution to y′′′ + 3y′′ + 3y′ + y = 0.

Solution. e−tD3u = 0 implies that u ∈ ker(D3). We know that
{1, t, t2} ∈ ker(D3), so that gives us three solutions: u = 1, t, t2.
Therefore, we get three solutions

y = e−t1, e−tt, e−tt2 ∈ ker
(
(D + 1)3)

So we can take a linear combination to get three independent
solutions

y = e−t(c1 + c2t + c3t
2)

■

9.4.5 Complex Roots in Differential Equations

(n) In the theory of differential equations, when we have complex
roots to p(D) ∈ R[x], such as λ = α ± iβ, then the solutions we
pick are not y = e(α±iβ)t, but

y = eαt cos(βt), eαt sin(βt)

Note that by Euler’s formula, these are just the real and imaginary
parts of e(α+βi)t. Verify that

eαt cos(βt), eαt sin(βt) ∈ ker
(
(D − α)2 + β2)

Hint: You can use that cos(βt), sin(βt) ∈ ker(D2 + β2)
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Solution.
(
(D − α)2 + β2) eαt cos(βt) = eαt

(
D2 + β2) cos(βt) = 0

Similarly,
(
(D − α)2 + β2) eαt sin(βt) = eαt

(
D2 + β2) sin(βt) = 0

■

Remark 42. We can combine all of this to solve p(D)y = 0 in
general. If the distinct roots of p are λ1, . . . , λk and

p(D) = (D − λ1)m1 . . . (D − λk)mk

then a general solution is

y = eλ1t
(
c11 + c12t + . . . + c1(m1−1)t

m1−1)
+ . . . + eλkt

(
ck1 + ck2t + . . . + ck(mk−1)t

mk−1)
And if those roots are real, then this is the solution we use. If
there are complex roots, then we adapt it similarly. If you have a
root α ± iβ repeated m times, (that is, ((D − α)2 + β2)m divides
p(D), then we get 2m solutions from

y = eαt
[(

c11 + c12t + . . . + c1(m−1)t
m−1) cos(βt)(

c21 + c22t + . . . + c2(m−1)t
m−1) sin(βt)

]

9.5 Eigenvalue / Eigenvector Shortcuts

Here’s a blog post on some general tricks, but these next few problems
show some of the results in that blog post.
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4. Show that for a 2×2 matrix, the “characteristic polynomial” det(A − λI)
is

det(A − λI) = λ2 − tr(A)λ + det(A) (10)
Recall that the trace tr(A) is the sum of the diagonal entries.

Hint: use the generic matrix A =
a b
c d

.
Solution.

det(A − λI) = det
a − λ b

c d − λ

 = (a − λ)(d − λ) − bc

= λ2 − (a + d)λ + ad − bc = λ2 − tr(A)λ + det(A)

■

9.5.1 Trace and Determinant

5. (a) Using the above formula for the characteristic polynomial of a
2 × 2, show that the eigenvalues λ1, λ2 of A must satisfy

λ1 + λ2 = tr(A)
λ1λ2 = det(A)

Hint: Use that the characteristic polynomial must factor into
(λ − λ1)(λ − λ2) and equate coefficients for the formula in the
previous problem.

Solution.

(λ − λ1)(λ − λ2) = λ2 − (λ1 + λ2)λ + λ1λ2

If
λ2 − tr(A) λ + det(A)

= λ2 − (λ1 + λ2) λ + λ1λ2
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Then we clearly need

λ1 + λ2 = tr(A)
λ1λ2 = det(A)

■

9.5.2 Black Magic

(b) Consider the matrix A =
2 3
1 0


i. Explain why the eigenvalues are λ = 3, −1, without computing

the characteristic polynomial, using the trace and determinant
(use question 5).
Hint: What are two numbers that add up to the trace and
multiply to the determinant?
Solution. Trace is 2 and determinant is −3. Two numbers that
add up to 2 and multiply to −3 are 3, −1. ■

ii. Find the eigenvectors for λ = 3 and λ = −1.
Solution.

A − 3I =
−1 3

1 −3


If we take 1 of column 2 and 3 of column 1, then that will

give zero. So v1 =
3
1

 is an eigenvector with eigenvalue 3.

A + I =
3 3
1 1


If we take 1 of column 2 and −1 of column 1 then we get zero,

so v2 =
−1

1

 is an eigenvector with eigenvalue −1. ■
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iii. Find a basis for the column space of A−3I and A+I. How do
the bases relate to the eigenvectors you found in the previous
part?
Solution. You can go through the steps of row reduction and
taking the pivot columns (there will always be one), but we
can observe that since nullity is 1 for both, then rank is 1 for
both, then any nonzero column (like the first in this particular
case) will always be a basis for the column space (in general,
any nonzero vector in a dimension 1 subspace is a basis for
that subspace). So

Col(A − 3I) = span

−1

1

 , Col(A + I) = span

3
1


and

ker(A − 3I) = span

3
1

 , ker(A + I) = span

−1

1


Wait... they’re just switched! The eigenvector for 3 generates
the image of A + I and the eigenvector for −1 generates the
image of A − 3I.

A − 3I =
−1 3
1 −3




3
1



A + I = 3 3
1 1




−1
1


■

Remark 43. No, this is not a coincidence. This always works for
2 × 2 matrices that aren’t just scalar multiples of the identity.
Any nonzero column of A − λ1I will be an eigenvector with
eigenvalue λ2 and vice versa.
This works in general for all matrices with a minimal polyno-
mial of degree exactly 2.
I call this the eigenvector columns theorem.
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Here’s a quick proof for why this is true (using some advanced
linear algebra) if you’re curious.
Proof. The characteristic polynomial of A is x2 − 2x − 3 =
(x − 3)(x + 1). By the Cayley Hamilton theorem (See (5.4)),
A satisfies

(A − 3I)(A + I) = 0
Thus, the images of A+I are contained in the kernel of A−3I
(the eigenspace of 3). So any nonzero column of A + I is an
eigenvector with eigenvector 3. Similarly, since

(A − 3I)(A + I) = (A + I)(A − 3I) = 0
then the image of A−3I is contained in the kernel of A+ I, so
any nonzero column of A + I is an eigenvector with eigenvalue
−1.

(c) In general, the trace is always the sum of the eigenvalues, and
the determinant is always the product for any square matrix.
If you can find n numbers that add up to the trace and multiply to
the determinant of an n×n matrix, those could be the eigenvalues.
For a 2 × 2 those will be the eigenvalues without exception. The
solution to that system of equations is unique (and given exactly
by (10)).
Find the eigenvalues of the matrix

A =


1 2 3
0 4 −1
0 2 1


Hint: det(A) = 6. What three numbers add up to the trace and
multiply to the determinant?
Solution. Three numbers that add up to the trace 1 + 4 + 1 = 6
and multiply to 6 are 1, 2, 3. And those are in fact the eigenvalues.
We can know this for sure since 1 is clearly an eigenvalue by
inspection (we can see Ae1 = e1, so A definitely has eigenvalue 1
(and e1 is an eigenvector!). ■
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9.6 Inner Products on Complex Vector Spaces

6. We showed a few weeks ago (6.4) that ∥v∥2 = vT v was not a good
way to define magnitudes when vectors can have complex entries.

For example, before, we saw
1
i

T 1
i

 = 12 + i2 = 0. Which gives a

“magnitude” of 0 even though the vector is nonzero! The way to fix
this is to use the “conjugate transpose”, or “adjoint”

v∗ ..= vT

where vT defines the transpose of the vector such that each entry
is changes to its conjugate (note this means that if v is real, then
v∗ = vT ). For this reason, I call the conjugate transpose ∗ the one
true transpose (pretty much all the nice properties you get involving
the transpose with real vectors/matrices are generalized with the
conjugate transpose when you move to complex stuff).
For a complex number, the magnitude is given by

|a + bi|2 = a2 + b2 = (a − bi)(a + bi)

Therefore, we can say |z|2 = zz, or |z|2 = z∗z if we allow z = z∗ for
scalars. We generalize this to vectors by

∥v∥2 = v∗v

Which has the effect of defining
∥∥∥∥∥∥∥∥∥


a1 + b1i

...
an + bni


∥∥∥∥∥∥∥∥∥

2

=
[
(a1 − b1i) · · · (an − bni)

] 
a1 + b1i

...
an + bni


= a2

1 + b2
1 + . . . + a2

n + b2
n

= |a1 + b1i|2 + . . . + |an + bni|2
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This is consistent with our idea of magnitude being the sum of the
squares of each entry. For complex numbers we just need to be a
bit more careful about how we get those “squares”. Note, also, this
means that all magnitudes are real.

For our vector
1
i

,
1
i

∗ 1
i

 =
[
1 −i

] 1
i

 = 12 + (−i)(i) = 1 + 1 = 2

which gives a much more reasonable magnitude for
1
i

 of
√

2.

9.6.1 Eigenvalues of Orthogonal / Symmetric Matrices

We define the adjoint (conjugate transpose) A∗ for a matrix A in a
similar way. A∗ = AT is just the conjugate of the transpose! You
may need to use the following facts in this problem: (v a vector and
α is a scalar)

(i) (v∗)∗ = v
(ii) |α|2 = αα

(iii) (αv)∗ = αv∗

(iv) If α = α, then α is real.

(a) Recall a (real) matrix is called “orthogonal” if its inverse is its
transpose (Q−1 = QT = Q∗). (See (6.3) and (6.5))
Show that if λ is an eigenvalue of Q, then |λ| = 1.
Hint: We showed previously that Q “preserves” angles and mag-
nitudes. That is, ∥v∥2 = ∥Qv∥2.

Solution. Suppose Qv = λv. Then we know

∥Qv∥2 = ∥v∥2

135



But

∥Qv∥2 = (Qv)∗ (Qv) = (λv)∗ λv = λv∗λv = |λ|2∥v∥2

Thus,
|λ|2∥v∥2 = ∥v∥2 =⇒ |λ| = 1

■

Remark 44. This doesn’t necessarily mean λ = ±1, since the
eigenvalues can be complex (but, if they are real, then they are
±1). But it does imply that all eigenvalue of an orthogonal (and,
more generally, unitary transformation) are on the unit circle in
the complex plane, and can be written as λj = eiθj .
One crazy fact is that this means if U−1 = U∗, then

U = eiH

where H∗ = H and eiH is the matrix exponential (see problem
7e).

(b) We showed before (6.6) that symmetric matrices have orthogonal
eigenvectors (when their eigenvalues are different). We can also
show their eigenvalues are all real too using a similar method.
Suppose that S is a real symmetric matrix (so S = ST = S∗)
and S has an eigenvector v with eigenvalue λ. Show λ is real by
considering

α = v∗Sv

Hint: α = α∗ = (v∗Sv)∗ = v∗S∗v. Since S is real and symmetric,
S∗ = S.

Solution.
α = v∗(Sv) = v∗(λv) = λ∥v∥2

We have from the hint that

α = v∗S∗v = v∗Sv = α
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Then, by the given property (iv), α is real! But then we have that
α = λ∥v∥2 is real. Since ∥v∥2 is real, then λ must be real. ■

Remark 45. You may notice that what’s really necessary for these
problems are
• Q−1 = Q∗

• S = S∗

In general, if U−1 = U∗, then U is called “Unitary” (Orthogonal
matrices are just the unitary matrices which are real), and if
H = H∗, then H is called “Hermitian” (and symmetric matrices
are just the Hermitian matrices which are real).
Another type is called “skew-hermitian” (or “skew-symmetric” if
it’s real), where A∗ = −A (or AT = −A if A is real). Then the
eigenvalues of A are purely imaginary (or zero). In fact, one other
interesting fact is that if n is odd, then any n × n skew-hermitian
matrix is never invertible. This is because det(A) = det(A∗) =
det(−A) = (−1)n det(A) = − det(A) =⇒ det(A) = 0.
These general classes of matrices are often called “normal” and
they are amazing. Some of the reasons they’re so fascinating are
covered in MATH132. But the main kicker is that they always
have an orthonormal eigenbasis (at least over C).

9.7 Diagonalization

7. Consider
A =

1 0
2 −1


(a) Find the eigenvectors and eigenvalues of A, and compute the

diagonalization
A = PDP −1
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You may use the trace and determinant to find the eigenvalues,
and the evil technique of problem 5b, or the fact that A is
triangular (or whatever technique you want).

Solution. This matrix is triangular, so the diagonal entries are
the eigenvalues (that’s the faster optimal way for this problem).
But otherwise, the trace is 0 and determinant is −1. Two numbers
that add up to 0 and multiply to −1 are ±1, so those are the
eigenvalues.
Looking at either the columns or kernel of A ± I (and dividing
by 2 if doing the columns) gives eigenvectors

λ = 1 =⇒ v1 =
1
1


λ = −1 =⇒ v2 =

0
1


The diagonalization is then given by putting the eigenvalues in a

matrix D =
1 0
0 −1

 (putting −1 first is fine but you have to be

careful with the order of the columns of P ).
Then P ’s first column is the eigenvector with eigenvalue 1, and
the second column is the eigenvector for the second eigenvalue:

P =
1 0
1 1

. Thus,

A =
1 0
1 1

 1 0
0 −1

 1 0
1 1

−1

■

(b) Show that

Ak = 1k

1
1

 [1 0
]
+ (−1)k

0
1

 [−1 1
]
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Note: This implies A = 1
1
1

 [1 0
]
+ (−1)

0
1

 [−1 1
]
.

Hint: Use the diagonalization! What is (PDP −1)k? You may
also use that a 0

0 b

k

= ak

1
0

 [1 0
]
+ bk

0
1

 [0 1
]

Solution. We know Ak = (PDP −1)k = PDkP −1, so

Ak = P

1k 0
0 (−1)k

P −1

=
1 0
1 1

 [1ke1eT
1 + (−1)ke2eT

2
]  1 0

−1 1


= 1k

1
1

 [1 0
]
+ (−1)k

0
1

 [−1 1
]

Selecting k = 1 shows the first requirement. ■

9.8 Systems of Differential Equations

(c) In differential equations, we are often concerned with problems
that can be somehow “reduced” to a problem of the form

d
dt

x(t) = Ax(t)

That is, finding vector functions x(t) where the derivative is the
same as multiplying by the matrix A (the derivative of a vector
function is calculated by differentiating each entry individually).

Verify that x1(t) = et

1
1

 and x2(t) = e−t

0
1

 are solutions to

this equation.
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Hint: For both, calculate x′(t) and Ax and just confirm they are
the same.

Solution. x′
1 = d

dte
t

1
1

 = et

1
1

.

Ax1 = Aet

1
1

 = et

1 0
2 −1

 1
1

 = et

1
1

 = x′
1 ✓

Similarly, x′
2 = d

dte
−t

0
1

 = −e−t

0
1

.

Ax2 = Ae−t

0
1

 = e−t

1 0
2 −1

 0
1

 = e−t

 0
−1

 = −e−t

0
1


= x′

2 ✓ ■

Remark 46. In general, if v is an eigenvector of A with eigenvalue
λ,

x(t) = eλtv

is a solution to x′(t) = Ax(t). The idea is that taking the
derivative only affects the exponential, which gets scaled by λ,
while A only affects v, which also gets scaled by λ. Thus, the
action of taking the derivative is the same as multiplying by A.

(d) We are often concerned about the stability of the solutions to
x′ = Ax. Will the solution explode to infinity, stay stable, or
tend to zero? Clearly, if λ > 0, then the solution x(t) = eλtv will
explode to infinity, since eλt → ∞ as t → ∞ when λ is positive.
Using question 5, explain why if tr(A) > 0 then the system is
automatically unstable (that is, at least one solution will explode
to infinity over time). For simplicity, assume the eigenvalues are
real (though this is true even if they are complex).
Hint: explain why at least one eigenvalue must be positive, and
then explain why that is sufficient.
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Solution. Since the trace is the sum of eigenvalues, if the sum is
positive, then at least one eigenvalue λ > 0 is positive. Then the
solution corresponding to that eigenvalue x = eλtv (where v is
any eigenvector with eigenvalue λ) will explode to infinity, so the
system is unstable. ■

9.8.1 Matrix Exponentials: eAt

(e) Recall from calculus that ex = ∑∞
k=0

xk

k! . We can compute the
matrix exponential as

eAt ..=
∞∑

k=0

tk

k!A
k

Show that for A =
1 0
2 −1

,

eAt = et

1
1

 [1 0
]
+ e−t

0
1

 [−1 1
]

=
 et 0
et − e−t e−t


Hint: Assume you can just distribute the sum.

Solution.

eAt =
∞∑

k=0

tk

k!

1k

1
1

 [1 0
]
+ (−1)k

0
1

 [−1 1
]

=
 ∞∑

k=0

tk

k!1
k

 1
1

 [1 0
]
+
 ∞∑

k=0

tk

k!(−1)k

 0
1

 [−1 1
]

= et

1
1

 [1 0
]
+ e−t

0
1

 [−1 1
]

=
 et 0
et − e−t e−t


■
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Remark 47. As a matter of fact, eAt = PeDtP −1. And eDt is easy
to calculate: it’s just the exponential of each entry.

(f) In the same way that d
dte

at = aeat, matrix exponentials satisfy a
similar property:
i. Multiply AeAt

ii. Take the derivative d
dte

At (take the derivative of each entry
individually)

and verify you get the same answer.

Solution.

AeAt =
1 0
2 −1

  et 0
et − e−t e−t

 =
 et 0
et + e−t −e−t


d
dt

eAt = d
dt

 et 0
et − e−t e−t

 =
 et 0
et + e−t −e−t

 = AeAt ✓

■

(g) Verify that if you plug in t = 0 to eAt, you get I.

Solution.
 e0 0
e0 − e−0 e−0

 =
 1 0
1 − 1 1

 =
1 0
0 1

 = I ✓ ■

(h) Based on the above, verify that
x(t) = eAtx0

is a solution to
d
dt

x(t) = Ax(t), x(0) = x0

Hint: Just explain why it satisfies both x′ = Ax and x(0) = x0.

Solution.
x′ = (eAt)′x0 = (AeAt)x0 = A(eAtx0) = Ax ✓

x(0) = eA0x0 = Ix0 = x0 ✓

■
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9.9 Orthogonal Diagonalization

8. Recall a matrix A is “diagonalizable” if there exists a matrix P such
that P −1AP = D ⇐⇒ A = PDP −1, where D is diagonal. It follows
that the columns of P must form an eigenbasis for A.

(a) Suppose that S is a real matrix with an orthonormal eigenbasis.
That is, the matrix Q with the eigenbasis as its columns is an
orthogonal matrix (Q−1 = QT ).

S = QDQ−1 = QDQT

Show that S is symmetric.

Solution. ST =
(
QDQT

)T =
(
QT

)T
DT QT = QDQT = S

since D is diagonal (and thus, symmetric). Thus, S = ST so it’s
symmetric. ■

Remark 48. By doing this, you will have shown that if a (real)
matrix has an orthonormal eigenbasis, then it is symmetric. We
say that an orthogonal matrix that diagonalizes S (QT SQ = D)
“orthogonally diagonalizes S”.
It turns out that all real symmetric matrices have an orthonormal
eigenbasis (though this is very hard to prove). That is, real
symmetric matrices are exactly the only kind of (real) matrix
guaranteed to have an orthonormal eigenbasis. This is why real
symmetric matrices are objectively the best matrices.

9.9.1 Spectral Decomposition

(b) Using problems 7b and 7e, explain why if the columns of Q are
vj, then
i.

S = λ1v1vT
1 + . . . + λnvnvT

n
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ii.
Sk = λk

1v1vT
1 + . . . + λk

nvnvT
n

iii.
eSt = eλ1tv1vT

1 + . . . + eλntvnvT
n

Hint: Use the idea of diagonalization to show ii. (since that im-
plies i. directly). For iii., you can use the logic of 7e (please don’t
do it all over again). I’m not looking for a lengthy explanation.
Remark. This is called the “spectral decomposition” of A. Each
vjvT

j is a projector onto the eigenvector vj.

Solution. We’ve already done the groundwork in problem 7.

D = λ1e1eT
1 + . . . + λneneT

n

so
Dk = λk

1e1eT
1 + . . . + λk

neneT
n

and thus all the same formulas from problem 7 hold, except it’ll
be vj and then eT

j QT = vT
j .

QDkQT = λk
1Qe1eT

1 QT + . . . + λk
nQeneT

n QT

= λk
1v1vT

1 + . . . + λk
nvnvT

n

Further, since eSt = QeDtQT (and also just based on what we did
in problem 7), we get

eSt = eλ1tv1vT
1 + . . . + eλntvnvT

n

■

9.9.2 Singular Value Decomposition / PCA

(c) We can do a similar decomposition into a sum of things in terms
of orthonormal bases with the Singular Value Decomposition
(SVD)

A = USV T
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where
• A and S are m × n

• U is an m × m orthogonal matrix
• V is an n × n orthogonal matrix.
S is a rectangular diagonal matrix with nonnegative “diagonal”
entries σk (the singular values in descending order) on the “diago-
nal”. The singular values squared σ2

k are the nonzero eigenvalues
of AT A and AAT , the columns of U are the eigenvectors of AAT

and the columns of V are the eigenvectors of AT A.
The following are examples of S matrices

7 0
0 3
0 0

 ,

4 0 0
0

√
2 0

 ,


3 0 0
0 2 0
0 0 0


Then we can write

S = σ1e(m)
1 e(n)

1
T

+ . . . + σre(m)
r e(n)

r

T

where the e(m)
j means the jth standard basis vector of Rm (and

e(n)
j is in Rn), and r is the rank (number of nonzero singular

values). Then, if the columns of U are uj, and the columns of V
are vj, then show we can write

A = σ1u1vT
1 + . . . + σrurvT

r

Solution. Given the sum formula for S above we have

USV T = σ1Ue(m)
1 e(n)

1
T
V T + . . . + σrUe(m)

r e(n)
r

T
V T

And Uej = uj and e(n)
r

T
V T = vT

j , so we just get the desired

A = σ1u1vT
1 + . . . + σrurvT

r

■
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Remark 49. PCA is essentially just taking some subset of the
singular values (the largest ones). This gives you the “most
important” contributing factors of the matrix.
If we convert an image into a matrix A (say it has 2,000 singular
values), then taking the first few hundred will result in a com-
pressed but largely recognizable version of the image. That is,
if

A = σ1u1vT
1 + . . . + σ2000u2000vT

2000

then a pretty good approximation is something like

A ≈ σ1u1vT
1 + . . . + σ300u300vT

300

but the latter takes up much less storage size.
When I did a project detecting if pages were black or white, I
found that white pages have one singular value much larger than
the second highest (they are much easier to approximate well)
while the largest singular values of a black page are closer together.

Figure 1: Ratio of Singular Values of PDFs with Black or White pages

Remark 50. Here are some facts about this decomposition that
can help you calculate it:
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i. Avj = σjuj

Thus, if you have all your vj vectors corresponding to the
nonzero singular values, you can get u from

uj = Avj

σj

ii. AT A = σ2
1v1vT

1 + . . . + σ2
rvrvT

r

Thus, you can get your v vectors by doing the (orthogonal)
diagonalization of AT A. Since it’s symmetric, we know this
decomposition into AT A = V DV T exists. More specifically,
AT A = V ST SV T , and ST S (and SST ) are both diagonal
matrices.

iii. Similarly, as AAT = USST UT ,

AAT = σ2
1u1uT

1 + . . . + σ2
ruruT

r

Some questions that naturally come up:
• Are the nonzero eigenvalues of AAT always the same as AT A?
• Is the rank of A always the same as AT A and AAT ?
• Does the SVD always exist?
The answer to all of these questions is a (possibly surprising) yes!
But they aren’t easy questions to answer.

9.10 Non-Diagonalizable Matrices

9. Consider the matrix
A =

3 −1
1 1


(a) Find the eigenvalues and corresponding eigenvectors.
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Solution. Trace is 4 and so is the determinant. The only two
numbers that add up and multiply to 4 are 2 and 2, so the
eigenvalues are λ = 2, 2 (2 is repeated!).

A − 2I =
1 −1
1 −1



A basis for the kernel is
1
1

 and that’s the only linearly indepen-

dent vector we can get, since there’s only one free variable. ■

(b) Show A is not diagonalizable.

Solution. Since we can’t form a basis of eigenvectors (there’s only
one linearly independent eigenvector), then it’s not diagonalizable.

■

9.10.1 Jordan Decomposition

10. Optional problem:

Continuing off from the previous problem with A =
3 −1
1 1

.
(a) Let λ be an eigenvalue of A and v be a corresponding eigenvector.

Show (A − λI)x = v is consistent. Let w be a solution.

Solution. We have λ = 2 and v =
1
1

. Then

[
A − λI v

]
=
 1 −1 1

1 −1 1

 ∼
 1 −1 1

0 0 0


The general solution is

w =
1
0

 + t

1
1


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The best choice is w =
1
0

. ■

(b) Show that (A − λI)2 = 0.

Solution. 1 −1
1 −1

 1 −1
1 −1

 =
0 0
0 0

 ✓

■

(c) Verify that the system c1v + 1
1
0

 = w is consistent.

Solution. With our choice of w =
1
0

, then this is clearly con-

sistent with c1 = 0. But no matter what we picked for w, this
would be consistent. Our general solution for w was

w = t

1
1

 +
1
0


which is exactly what this question is asking about (letting t =
c1). ■

(d) Verify that

A =
1 1
1 0

 λ 1
0 λ

 1 1
1 0

−1

Hint: For ease of calculation, you can use that this expression is
equal to

λI +
1 1
1 0

 0 1
0 0

 1 1
1 0

−1

= λI +
1 1
1 0

 1
0

 [0 1
] 0 1

1 −1


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Solution.

2I +
1 1
1 0

 1
0

 [0 1
] 0 1

1 −1

 = 2I +
1
1

 [1 −1
]

=
3 −1
1 1


■

Remark 51. The matrix
λ 1
0 λ

 is called a Jordan matrix, and would

be A’s Jordan Canonical Form. It’s the best eigendecomposition you
can do for a nondiagonalizable matrix (i.e. as close as you can get to
a diagonal matrix). As we can see, (A − λI)2 = 0 shows that A has
some “nilpotency” to it, which is actually why it isn’t diagonalizable.
MATH132 is also the class that teaches you primarily about this
form of decomposition.
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Theorem List

Vector spaces are real and finite dimensional unless otherwise specified.
Definition 52. The span of a set of vectors

span {v1, . . . , vk} = {c1v1 + . . . + ckvk : ci ∈ R}

is the set of all linear combinations of that set of vectors.
The span can be understood as a subspace that the vectors generate.

It is the smallest subspace that contains all the vectors.
Definition 53. A set of vectors {v1, . . . , vn} is linearly dependent if
one of the vectors (say vi) can be written as a linear combination of the
other vectors

vi = c1v1 + . . . + ci−1vi−1 + ci+1vi+1 + . . . + cnvn

i.e. at least one vector vi is in the span of the other vectors. Note that
this means we can remove vi from the set of vectors, and the span will
be unchanged. In other words, the set isn’t a “minimal generating set”,
since we can get the same span with fewer vectors.

Equivalently, there is a linear combination such that

c1v1 + . . . + cnvn = 0

where at least one ci ̸= 0.
Definition 54. A set of vectors {v1, . . . , vn} is linearly independent if
none of the vectors can be written as a linear combination of the other
vectors. Equivalently, the only linear combination such that

c1v1 + . . . + cnvn = 0

is the trivial solution c1 = c2 = . . . = cn = 0.
This implies that S is a minimal generating set for its span. That is,

we cannot remove any of the vectors without reducing the span.
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Remark 55. Equivalently, one can define linear independence as the
property that representation by linear combinations is unique. That is, if
{v1, . . . , vn} is linearly independent and

x = c1v1 + . . . + cnvn = k1v1 + . . . + knvn

then c1 = k1, . . . , cn = kn.
i.e. we can’t get the same vector with a different linear combination.
Note that this does imply that a linearly dependent set of vectors is

exactly a set where linear combination representations are not unique.
This is consistent with the idea of trying to find a nontrivial linear
combination representation of 0⃗.

10.1 Subspaces, Column Space, Null Space, Linear
Transformations

Definition 56. A linear transformation is a function between vector spaces
that preserves linear combinations

T : V → W, T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

Theorem 57. A function T between vector spaces is a linear transformation
if and only if both T (⃗0) = 0⃗ and

T (v + kw) = T (v) + kT (w)

Definition 58. A subspace W is a nonempty subset of a vector space V
that is closed under linear combinations. i.e. if u, v are in W , then

c1u + c2v ∈ W

for all c1, c2 ∈ R.
Theorem 59. A nonempty subset of a real vector space W ⊂ V is a
subspace if and only if both 0⃗ ∈ W and

w1 + kw2 ∈ W

for all k ∈ R and w1, w2 ∈ W .
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Theorem 60. The span of a set of vectors is a subspace. Additionally, any
subspace can be represented as the span of a set of vectors.

Further, the span of a set of vectors W = span {v1, . . . , vn} (called
the subspace generated by {v1, . . . , vn}) is the smallest subspace that
contains the vectors {v1, . . . , vn}.
Definition 61. We often use the notation TA to denote the linear transfor-
mation TA(x) = Ax. Some texts make a distinction and say Nul A and
ker(TA), but I personally make no distinction. ker(A) is perfectly fine, in
my opinion.
Definition 62. The column space of a matrix A, Col A, is the span of
the columns. This is just the image of TA. Thus, you can think of it as
every vector b such that Ax = b is consistent.
Theorem 63. A transformation TA is surjective/onto if and only if the
column space of A ∈ Rm×n is Rm.
Definition 64. The null space or kernel of a matrix A, Nul A, ker(A),
or ker(TA) is the set of all solutions to the homogeneous equation Ax = 0⃗.
This is just the set of all preimages of 0⃗.
Theorem 65. A transformation is injective or one-to-one if and only if
ker(A) =

{⃗
0
}
. That is, if the only preimage of 0⃗ is 0⃗.

Definition 66. A basis of a subspace W is a set of vectors {v1, . . . , vk} in
W such that

1. span {v1, . . . , vk} = W

2. {v1, . . . , vk} is linearly independent

i.e. a linearly independent spanning/generating set
Remark 67. If you think of linear independence as the property of having
unique representations by linear combinations (i.e. c1v1 + . . . + cnvn =
k1v1 + . . . + knvn if and only if ci = ki for all i), then a basis for W is a
set of vectors such that every vector in W can be represented uniquely as
a linear combination of the vectors.
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Definition 68. The dimension of a subspace W is the number of elements
in a basis for W .
Theorem 69. Suppose V is a vector space of dimension n and S is any set
of vectors.

• If S has more than n vectors, it is not linearly independent.

• If S has less than n vectors, then it does not span V .

• If S has exactly n vectors, then it spans V if and only if it is a linearly
independent set.

• As a corollary of the above, any linearly independent set with dim(W )
vectors in W

1. spans W

2. is a basis for W

Definition 70. The rank of a matrix rank(A) is the dimension of its
column space/image. The nullity nullity(A) is the dimension of its null
space.
Theorem 71. The rank of a matrix is the number of pivots, and the nullity
is the number of free variables.
Theorem 72 (Rank-Nullity). A ∈ Rm×n =⇒ rank(A) + nullity(A) = n

Note: this is equivalent to

[# of pivot cols] + [# of free variables] = [# of total cols]

10.2 Eigenvalues and Eigenvectors
We may use “ew” for “eigenvalue” and “ev” for eigenvector.
Definition 73. An eigenvector (ev) of a linear operator T is a vector v ̸= 0⃗
such that

T (v) = λv
where λ is the eigenvalue (ew) of v.
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Definition 74. We call Eλ(T ) the “eigenspace” of T of eigenvalue λ. It’s
the subspace containing all eigenvector of eigenvalue λ.

Eλ(T ) = ker(T − λI)

Note: E0(T ) = ker(T ) means that nontrivial kernel elements are eigen-
vectors with eigenvalue 0 (which makes sense since Tv = 0⃗ = 0v).
Theorem 75. λ is an eigenvalue of T if and only if

det(T − λI) = 0

(otherwise the kernel is trivial, so there are no nonzero solutions to
Tv = λv).
Remark 76. In general, in a linear algebra course we’re kind of anal about
what is or isn’t an eigenvector. It has to be a part of the “field” the
matrix is over. For example,

A =
0 −1
1 0


is a 90◦ rotation matrix. Its characteristic polynomial is λ2 + 1 = 0 which
has roots λ = ±i.

The non-mathematicians say ±i are the eigenvalues, and the eigenvec-

tors are
±i

1

.
But mathematicians say “no! if A is a matrix over R then its eigenvalues

can only be real! thus A has no eigenvalues (over R)!”
So while this matrix does have two linearly independent eigenvectors,

because they’re in C2 (even though they form a basis), we can’t say A is
diagonalizable. If you go on to do more advanced linear algebra, just be
careful with what you call an eigenvalue.
Definition 77. The “characteristic polynomial” of T is

det(λI − T ) = 0

(det(T − λI) works too, but isn’t always monic)
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Definition 78. We say T is diagonalizable if and only if T has an eigenbasis.
That is, if there is a basis of eigenvectors. In the case of matrices, we can
say

A = PDP −1

where P is an invertible matrix of eigenvectors (this is only possible if A is
diagonalizable) and D is a diagonal matrix of corresponding eigenvalues.
Theorem 79. If v1 is an ev with ew λ1 and v2 is an ev with ew λ2 and
λ1 ̸= λ2, then v1, v2 are linearly independent.
Corollary 80. If T is an operator on Rn with n distinct eigenvalues, then
T is diagonalizable.
Theorem 81. λ = 0 is an ew of T if and only if T is not invertible (it has
a nontrivial kernel).
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Span / Linear (in)dependence

11.1 Span
We can imagine a vector as a point or an arrow. For example, (1, 1) is
an arrow that stretches from the origin to the point (1, 1), which is at a
45◦ degree angle from the x-axis. We can also say that it lies on the line
y = x. So what is the connection between the vector (1, 1) and the line
y = x? The answer is span.
Definition 82. The span of a set of vectors {v1, . . . , vm} in Rn is the set
of all linear combinations of those vectors.

span {v1, . . . , vm} ..= {c1v1 + . . . + cmvm : ci ∈ R} (11)

To take an example, the span of



1
0
0

 ,


0
0
1


 is the set of all vectors of

the form c1


1
0
0

 + c2


0
0
1

. The span of (1, 1) is going to be all vectors of

the form c(1, 1).
Take a set of vectors B = {v1, . . . , vm} ⊆ Rn. If the span of B gives

the entire space, that is span B = Rn, then we say that B spans Rn.
The span of a set of vectors generates what we call a subspace. For

now, you can just think of that as meaning a point, line, or a plane in
space (that includes the origin). This is a massive oversimplification but
it’s good enough for now.

For example, span



1
0
0

 ,


0
0
1


 describes a plane in R3 (specifically, the

xz-plane).
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The span of the zero vector is just the origin. The span of a single
nonzero vector is just a line through the origin. This isn’t completely
deterministic, though. You can take the span of a million vectors and
it could still just be a line (if every vector is a scalar multiple of each
other).

Ex. span

1
1

 , 2
1
1

 , . . . , 106
1
1

 = span

1
1

 (the line y = x).

11.2 Linear (in)dependence
So the span of some vectors is the set of every linear combination. Let’s
reexamine the example

span



1
0
0

 ,


0
0
1


 =

c1


1
0
0

 + c2


0
0
1

 : c1, c2 ∈ R

 =



a
0
b

 : a, b ∈ R


in R3. Notice that the span of these vectors is all vectors with a zero in
the second component.

What if we tack on another vector,


1
0
1

?

c1


1
0
0

 + c2


0
0
1

 + c3


1
0
1

 =


c1 + c3

0
c2 + c3


But that doesn’t really get us anything new. That is, the span is un-

changed after adding the vector. You can think of it as


1
0
1

 doesn’t give

us any new information that


1
0
0

 and


0
0
1

 already did. The way we say
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that mathematically is that


1
0
1

 is linearly dependent with



1
0
0

 ,


0
0
1


.

This happened specifically because

1
0
1

 = 1


1
0
0

 + 1


0
0
1



That is,


1
0
1

 is a linear combination of


1
0
0

 and


0
0
1

. Or, it is in the span

of those vectors.
Definition 83. A set of vectors {v1, . . . , vn} is linearly dependent if
one of the vectors (say vi) can be written as a linear combination of the
other vectors

vi = c1v1 + . . . + ci−1vi−1 + ci+1vi+1 + . . . + cnvn

i.e. at least one vector vi is in the span of the other vectors. Note that
this means we can remove vi from the set of vectors, and the span will
be unchanged. In other words, the set isn’t a “minimal generating set”,
since we can get the same span with fewer vectors.

Equivalently, there is a linear combination such that

c1v1 + . . . + cnvn = 0

where at least one ci ̸= 0.
Here’s the thing about linear algebra: just because two vectors are

distinct, doesn’t mean we need both of them. In a way, the vectors (1, 1)
and (2, 2) are nearly the same because one is a scalar multiple of the
other. Students are often used to using every distinct object available,
but the way we sift through vectors, and decide what is important, is
by considering linear independence. Linear independence is truly one of
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the most important concepts in linear algebra! Unsurprisingly, a set of
vectors are linearly independent when they are not linearly dependent.
Here is the formal definition:
Definition 84. A set of vectors {v1, . . . , vn} is linearly independent if
none of the vectors can be written as a linear combination of the other
vectors. Equivalently, the only linear combination such that

c1v1 + . . . + cnvn = 0

is the trivial solution c1 = c2 = . . . = cn = 0.
This implies that S is a minimal generating set for its span. That is,

we cannot remove any of the vectors without reducing the span.
Remark. Equivalently, one can define linear independence as the prop-
erty that representation by linear combinations is unique. That is, if
{v1, . . . , vn} is linearly independent and

x = c1v1 + . . . + cnvn = k1v1 + . . . + knvn

then c1 = k1, . . . , cn = kn.
i.e. we can’t get the same vector with a different linear combination.
Note that this does imply that a linearly dependent set of vectors is

exactly a set where linear combination representations are not unique.

11.2.1 Showing a set of vectors is linearly (in)dependent

To show a set of vectors is linearly dependent, you can go about it two
main ways:

1. Write one of the vectors as a linear combination of the others.

2. Find a nontrivial linear combination that yields zero.

To show vectors are linearly independent, you almost always start with
the equation

c1v1 + . . . + cnvn = 0
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and attempt to show that all the constants must be zero c1 = c2 =
. . . = cn = 0. In the case where you have very few vectors (two to three,
generally, max), you can also show that no vector is a linear combination
of the others.

You can also start with c1v1 + . . .+ cnvn = 0 to show that something is
linearly dependent, and attempt to simplify until you can find a nonzero
solution for c1, . . . , cn.
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Injective / Surjective Handout

What the heck do these terms mean?

12.1 Images and Preimages
Recall that if

T (x) = y

then we say y is the image of x, and x is a preimage of y.
An image is unique (as the output for a function is unique), but a

preimage is not necessarily. A preimage also need not exist for every
element in the codomain.

12.2 Linear Transformations
A linear transformation is a function that preserves linear combinations

T (c1v1 + . . . + cnvn) = c1T (v1) + . . . + cnT (vn)

12.3 Kernel and Range
The kernel is all preimages of zero. That is, stuff that gets sent to zero.

T (x) = 0⃗ ⇐⇒ x ∈ ker(T )

The range of a transformation is the set of all possible outputs (that T
can reach). i.e. all the vectors in the codomain that have a preimage.
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12.4 Injective
Injective (often called being one-to-one) is the property that preimages
are unique. That is, there’s only one input for every output. In symbols

T (x) = T (y) =⇒ x = y

But using our properties of linear transformations, this is equivalent to

T (x − y) = 0⃗ =⇒ x − y = 0

or T (z) = 0⃗ =⇒ z = 0. That is, the only preimage of 0⃗ is 0⃗. This is the
same as saying the kernel is “trivial” or

ker(T ) =
{⃗
0
}

How do we determine if something like Ax = b has a unique solution,
though? Well, the basic idea is that if we solve

Ax = 0⃗

then we want to have only the unique solution of 0⃗. Thus, we need there
to be no free variables. That is, if the preimage of 0⃗ is unique, then all
preimages are unique!

This gives us a criterion to determine if Ax is injective:
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Theorem 85. Ax is injective (one-to-one) if and only if

• every column of A is a pivot column

• there are no free variables

• the columns of A are linearly independent

• every column has a pivot

• the only solution to Ax = 0 is x = 0

• every consistent system Ax = b has a unique solution (a solution
does not need to exist, though)

• There is no nontrivial solution to Ax = 0⃗

• ker(A) = {0}

All of these are equivalent ways to say the same thing.

Notice that injectivity is about the columns not rows. You can get a
row of zeros and still be injective!

12.4.1 Showing it’s not injective

Reversing some of the statements we can get some easy checks to show
something is not injective.

• If there are more columns than rows, we must have a free variable so
it can’t be injective

• If you can find a nonzero preimage of 0⃗ (a nonzero solution to Ax = 0⃗),
it’s not injective

One way to interpret having “too many columns” is that the domain
of the transformation is much larger than the codomain. Thus, if you try

164



to squeeze, say, a seven dimensional space into a three dimensional space,
then there will inevitably be things that “fold onto themselves”, which
means multiple inputs map to the same output.

12.5 Surjective
To be surjective (often called onto) means that every vector in the
codomain has a preimage. That is, the range is the whole codomain. We
can also think of it as

T (x) = b

always has a solution for all b.
Let’s think about this in terms of matrices. If we want

Ax = b

to be consistent, then you might make the observation that there can’t
be a row of zeros. If there is a row of zeros, then we might get 0 = 1. If
there isn’t a row of zeros, then we’ll always get a solution. We have the
criterion

Theorem 86. Ax is surjective (onto) if and only if

• every row of A has a pivot

• the rows of A are linearly independent

• there are no rows of zeros in the EF or REF

• Ax = b is consistent for all b

Similar to how injectivity is about the columns, surjectivity is about
the rows. You can have free variables and still be surjective (though
students don’t typically make this mistake as much as thinking a row of
zeros means not injective).
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To show something is surjective, you can do any of these things, but
the most basic (but not necessarily easy way) is to find a generic preimage
of anything in the codomain. For example, if you can find a preimage

of both
1
0

 and
0
1

, then it must be surjective because every vector is

a linear combination of those, so you can get any preimage as a linear
combination of those preimages.

But a more surefire method is to start row reducing until you can show
every row will have a pivot.

Similar to how having too many columns means its not injective, too
many rows means it can’t be surjective. We can have a similar geometric
image that if we try to spread out a smaller dimensional space into a
larger one, it won’t work. For example, stretching R2 into R3 is impossible.
You can, at best, get a plane.

12.6 Square Matrices
Notice that injectivity is equivalent to having a pivot in every column,
and surjectivity is equivalent to having a pivot in every row.

Thus, if A is a square matrix, having a pivot in every column is the
same as having a pivot in every row. Therefore,

Theorem 87. If A is a square matrix, then Ax is surjective if and
only if Ax is injective.

This is really nice because checking injectivity is generally easier than
checking surjectivity.
Remark 88. Personally, I dislike justifying the equivalence of injectivity
and surjectivity this way, but it is a valid method.

That does mean, though, that a row of zeros is enough to say it’s not
injective or surjective.
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Non-Worksheet Problems

These were going to be in worksheets or were on worksheets in a previous
quarter (but due to the different way the course was taught, they weren’t
really appropriate).

1. Consider the matrix


0 1 1 1
1 0 5 3
0 0 2 4

−2 1 −9 −4


(a) Perform the following row operations:

• R1 ↔ R2

• R3 → −R1 + 2R2 + R4

• R4 → 1
2R3

(b) Compute the following matrix multiplication
0 1 0 0
1 0 0 0

−1 2 0 1
0 0 1

2 0




0 1 1 1
1 0 5 3
0 0 2 4

−2 1 −9 −4


and compare the result to part a.

(c) Explain the connection between the matrix

B =


0 1 0 0
1 0 0 0

−1 2 0 1
0 0 1

2 0


and the row operations from part a.
• R1 → R2
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• R2 → R1

• R3 → −R1 + 2R2 + R4

• R4 → 1
2R3

Hint: Compare the operations to the rows of B[
0 1 0 0

]
⇐⇒ R1 → R2[

1 0 0 0
]

⇐⇒ R2 → R1[
−1 2 0 1

]
⇐⇒ R3 → −R1 + 2R2 + R4[

0 0 1
2 0

]
⇐⇒ R4 → 1

2R3

(d) Write a matrix C that performs the following operations
• Multiply row 1 by four

R1 → 4R1

• Swap rows 2 and 4
R2 ↔ R4

• Leave row 3 the same.
R3 → R3

2. Determine if the given set is a subspace of Pn for an appropriate
value of n. Justify your answers.

(a) All polynomials of the form p(t) = a + t2, where a is in R.
(b) All polynomials of degree at most 3, with integers as coefficients.
(c) Let H be the set of all vectors of the form


s
3s
2s


Find a vector v in R3 such that H = Span{v}. Why does this
show that H is a subspace of R3?
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3. The set of all continuous real-valued functions defined on a closed
interval [a, b] in R is denoted by C[a, b]. This set is a subspace of the
vector space of all real-valued functions defined on [a, b].
Show that {f ∈ C[a, b] : f(a) = f(b)} is a subspace of C[a, b].

4. For fixed positive integers m and n, the set Mm×n of all m × n
matrices is a vector space, under the usual operations of addition of
matrices and multiplication by real scalars.

(a) Determine if the set H of all matrices of the forma b
0 d


is a subspace of M2×2.

(b) Let F be a fixed 3 × 2 matrix, and let H be the set of all matrices
A in M2×4 with the property that FA = 0 (the zero matrix in
M3×4). Determine if H is a subspace of M2×4.

5. Define T : P2 → R2 by T (p) =
p(0)
p(1)

. For instance, if p(t) =

3 + 5t + 7t2, then T (p) =
 3
15

.
Show that T is a linear transformation. [Hint: For arbitrary polyno-
mials p, q in P2, compute T (p + q) and T (cp).]

6. Let M2×2 be the vector space of all 2 × 2 matrices, and define

T : M2×2 → M2×2 by T (A) = A + AT , where A =
a b
c d

.
Show that T is a linear transformation.

7. Define T : P2 → R2 by T (p) =
p(0)
p(1)

. For instance, if p(t) =

3 + 5t + 7t2, then T (p) =
 3
15

.
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Find a polynomial p in P2 that spans the kernel of T , and describe
the range of T .

8. Define a linear transformation T : P2 → R2 by T (p) =
p(0)
p(0)

. Find

polynomials P1 and P2 in P2 that span the kernel of T , and describe
the range of T .

9. Let M2×2 be the vector space of all 2 × 2 matrices, and define

T : M2×2 → M2×2 by T (A) = A + AT , where A =
a b
c d

.
Find the kernel and range of T .

10. The set B = {1 + t2, t + t2, 1 + 2t + t2} is a basis for P2. Express
p(t) = 1 + 4t + 7t2 as a linear combination of the vectors of B.

13.1 RIP Determinants

11. Find the determinants by row reduction to echelon form.

(a)

∣∣∣∣∣∣∣∣∣∣∣

1 3 2 −4
0 1 2 −5
2 7 6 −3

−3 −10 −7 2

∣∣∣∣∣∣∣∣∣∣∣
(b)

∣∣∣∣∣∣∣∣∣∣∣

1 −1 −3 0
0 1 5 4

−1 0 5 3
3 −3 −2 3

∣∣∣∣∣∣∣∣∣∣∣
12. Compute the determinants by cofactor expansions. At each step,

choose a row or column that involves the least amount of computation.

(a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 0 −7 3 −5
0 2 0 0 0
7 3 −6 4 −8
5 0 5 2 −3
0 0 9 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6 3 2 4 0
9 0 −4 1 0
8 −5 6 7 1
2 0 0 0 0
4 2 3 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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13. If two rows/columns of a matrix are identical, then the determinant
is zero. Show that if x1 ̸= x2, then

∣∣∣∣∣∣∣∣
1 x y
1 x1 y1
1 x2 y2

∣∣∣∣∣∣∣∣ = 0

defines a line that passes through (x1, y1) and (x2, y2)

14. The expansion of a 3 × 3 determinant can be remembered by the
following device. Write a second copy of the first two columns to the
right of the matrix, and compute the determinant by multiplying
entries on six diagonals:

Add the downward diagonal products and subtract the upward prod-
ucts. Use this method to compute the determinants in Exercises
15–18. Warning: This trick does not generalize in any rea-
sonable way to 4 × 4 or larger matrices.

(a)

∣∣∣∣∣∣∣∣
1 0 4
2 3 2
0 5 −2

∣∣∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
1 3 4
2 3 1
3 3 2

∣∣∣∣∣∣∣∣
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